Liang Jia-Yan, Zhang Yanyan, Xin Sen, Tan Shuang-Jie, Meng Xin-Hai, Wang Wen-Peng, Shi Ji-Lei, Wang Zhen-Bo, Wang Fuyi, Wan Li-Jun, Guo Yu-Guo
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China.
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.
Angew Chem Int Ed Engl. 2023 Apr 11;62(16):e202300384. doi: 10.1002/anie.202300384. Epub 2023 Mar 13.
In overcoming the Li desolvation barrier for low-temperature battery operation, a weakly-solvated electrolyte based on carboxylate solvent has shown promises. In case of an organic-anion-enriched primary solvation sheath (PSS), we found that the electrolyte tends to form a highly swollen, unstable solid electrolyte interphase (SEI) that shows a high permeability to the electrolyte components, accounting for quickly declined electrochemical performance of graphite-based anode. Here we proposed a facile strategy to tune the swelling property of SEI by introducing an inorganic anion switch into the PSS, via LiDFP co-solute method. By forming a low-swelling, Li PO -rich SEI, the electrolyte-consuming parasitic reactions and solvent co-intercalation at graphite-electrolyte interface are suppressed, which contributes to efficient Li transport, reversible Li (de)intercalation and stable structural evolution of graphite anode in high-energy Li-ion batteries at a low temperature of -20 °C.
在克服低温电池运行中的锂去溶剂化障碍方面,基于羧酸盐溶剂的弱溶剂化电解质已展现出前景。在富含有机阴离子的初级溶剂化鞘层(PSS)的情况下,我们发现电解质倾向于形成高度膨胀、不稳定的固体电解质界面(SEI),该界面对电解质成分具有高渗透性,这导致基于石墨的负极的电化学性能迅速下降。在此,我们提出了一种简便策略,通过LiDFP共溶质法将无机阴离子开关引入PSS中,以调节SEI的膨胀特性。通过形成低膨胀、富含Li₃PO₄的SEI,抑制了石墨-电解质界面处消耗电解质的寄生反应和溶剂共嵌入,这有助于在-20°C的低温下实现高能锂离子电池中锂的高效传输、可逆锂嵌入/脱嵌以及石墨负极的稳定结构演变。