Huang Yaohui, Geng Jiarun, Jiang Zhuoliang, Ren Meng, Wen Bo, Chen Jun, Li Fujun
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China.
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.
Angew Chem Int Ed Engl. 2023 Jul 24;62(30):e202306236. doi: 10.1002/anie.202306236. Epub 2023 Jun 23.
Li-O batteries have garnered much attention due to their high theoretical energy density. However, the irreversible lithium plating/stripping on the anode limits their performance, which has been paid little attention. Herein, a solvation-regulated strategy for stable lithium anodes in tetraethylene glycol dimethyl ether (G4) based electrolyte is attempted in Li-O batteries. Trifluoroacetate anions (TFA ) with strong Li affinity are incorporated into the lithium bis(fluorosulfonyl)imide (LiTFSI)/G4 electrolyte to attenuate the Li -G4 interaction and form anion-dominant solvates. The bisalt electrolyte with 0.5 M LiTFA and 0.5 M LiTFSI mitigates G4 decomposition and induces an inorganic-rich solid electrolyte interphase (SEI). This contributes to decreased desolvation energy barrier from 58.20 to 46.31 kJ mol , compared with 1.0 M LiTFSI/G4, for facile interfacial Li diffusion and high efficiency. It yields extended lifespan of 120 cycles in Li-O battery with a limited Li anode (7 mAh cm ). This work gains comprehensive insights into rational electrolyte design for Li-O batteries.
锂-氧电池因其高理论能量密度而备受关注。然而,阳极上不可逆的锂电镀/脱镀限制了其性能,而这一点一直未得到足够重视。在此,尝试在基于四甘醇二甲醚(G4)的电解质中采用溶剂化调控策略来稳定锂阳极用于锂-氧电池。将具有强锂亲和力的三氟乙酸根阴离子(TFA)引入双(氟磺酰)亚胺锂(LiTFSI)/G4电解质中,以减弱锂与G4的相互作用并形成阴离子主导的溶剂化物。含有0.5 M LiTFA和0.5 M LiTFSI的双盐电解质减轻了G4分解,并诱导形成富含无机物的固体电解质界面(SEI)。与1.0 M LiTFSI/G4相比,这有助于将去溶剂化能垒从58.20降低至46.31 kJ/mol,从而实现便捷的界面锂扩散和高效率。它使具有有限锂阳极(7 mAh/cm²)的锂-氧电池的循环寿命延长至120次。这项工作为锂-氧电池合理设计电解质提供了全面深入的见解。