Suppr超能文献

一种用于嵌入脂质立方相的膜蛋白晶体的 MicroED 样品制备的稳健方法。

A robust approach for MicroED sample preparation of lipidic cubic phase embedded membrane protein crystals.

机构信息

Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095, USA.

Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA.

出版信息

Nat Commun. 2023 Feb 25;14(1):1086. doi: 10.1038/s41467-023-36733-4.

Abstract

Crystallizing G protein-coupled receptors (GPCRs) in lipidic cubic phase (LCP) often yields crystals suited for the cryogenic electron microscopy (cryoEM) method microcrystal electron diffraction (MicroED). However, sample preparation is challenging. Embedded crystals cannot be targeted topologically. Here, we use an integrated fluorescence light microscope (iFLM) inside of a focused ion beam and scanning electron microscope (FIB-SEM) to identify fluorescently labeled GPCR crystals. Crystals are targeted using the iFLM and LCP is milled using a plasma focused ion beam (pFIB). The optimal ion source for preparing biological lamellae is identified using standard crystals of proteinase K. Lamellae prepared using either argon or xenon produced the highest quality data and structures. MicroED data are collected from the milled lamellae and the structures are determined. This study outlines a robust approach to identify and mill membrane protein crystals for MicroED and demonstrates plasma ion-beam milling is a powerful tool for preparing biological lamellae.

摘要

在类脂立方相 (LCP) 中结晶 G 蛋白偶联受体 (GPCR) 通常会产生适合低温电子显微镜 (cryoEM) 方法微晶电子衍射 (MicroED) 的晶体。然而,样品制备具有挑战性。嵌入的晶体在拓扑上无法定位。在这里,我们在聚焦离子束和扫描电子显微镜 (FIB-SEM) 内部使用集成荧光显微镜 (iFLM) 来识别荧光标记的 GPCR 晶体。使用 iFLM 定位晶体,并使用等离子体聚焦离子束 (pFIB) 研磨 LCP。使用蛋白酶 K 的标准晶体确定了制备生物薄片的最佳离子源。使用氩气或氙气制备的薄片产生了质量最高的数据和结构。从研磨的薄片中收集 MicroED 数据并确定结构。这项研究概述了一种用于 MicroED 识别和研磨膜蛋白晶体的强大方法,并证明等离子体离子束铣削是制备生物薄片的有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41da/9968316/be88e6347740/41467_2023_36733_Fig1_HTML.jpg

相似文献

2
Structure Determination from Lipidic Cubic Phase Embedded Microcrystals by MicroED.
Structure. 2020 Oct 6;28(10):1149-1159.e4. doi: 10.1016/j.str.2020.07.006. Epub 2020 Jul 30.
3
MicroED structure of the human adenosine receptor determined from a single nanocrystal in LCP.
Proc Natl Acad Sci U S A. 2021 Sep 7;118(36). doi: 10.1073/pnas.2106041118.
4
MicroED structure of lipid-embedded mammalian mitochondrial voltage-dependent anion channel.
Proc Natl Acad Sci U S A. 2020 Dec 22;117(51):32380-32385. doi: 10.1073/pnas.2020010117. Epub 2020 Dec 8.
5
Qualitative Analyses of Polishing and Precoating FIB Milled Crystals for MicroED.
Structure. 2019 Oct 1;27(10):1594-1600.e2. doi: 10.1016/j.str.2019.07.004. Epub 2019 Aug 15.
6
MicroED structure of the human vasopressin 1B receptor.
bioRxiv. 2023 Jul 6:2023.07.05.547888. doi: 10.1101/2023.07.05.547888.
8
Collection of Continuous Rotation MicroED Data from Ion Beam-Milled Crystals of Any Size.
Structure. 2019 Mar 5;27(3):545-548.e2. doi: 10.1016/j.str.2018.12.003. Epub 2019 Jan 17.
9
Design and implementation of suspended drop crystallization.
IUCrJ. 2023 Jul 1;10(Pt 4):430-436. doi: 10.1107/S2052252523004141.
10
Studying Membrane Protein Structures by MicroED.
Methods Mol Biol. 2021;2302:137-151. doi: 10.1007/978-1-0716-1394-8_8.

引用本文的文献

1
Direct from the Seed: An Atomic-Resolution Protein Structure by Ab Initio MicroED.
bioRxiv. 2025 Jul 5:2025.07.03.663097. doi: 10.1101/2025.07.03.663097.
2
Recovering high-resolution information using energy filtering in MicroED.
Struct Dyn. 2025 May 13;12(3):034702. doi: 10.1063/4.0000755. eCollection 2025 May.
3
Recovering high-resolution information using energy filtering in MicroED.
bioRxiv. 2025 Mar 26:2025.03.26.645403. doi: 10.1101/2025.03.26.645403.
4
Structure of the lens MP20 mediated adhesive junction.
Nat Commun. 2025 Mar 26;16(1):2977. doi: 10.1038/s41467-025-57903-6.
5
Small but mighty: the power of microcrystals in structural biology.
IUCrJ. 2025 May 1;12(Pt 3):262-279. doi: 10.1107/S2052252525001484.
6
Characterization of energy filtering slit widths for MicroED data collection.
bioRxiv. 2025 Feb 27:2025.02.24.639939. doi: 10.1101/2025.02.24.639939.
8
Energy filtering enables macromolecular MicroED data at sub-atomic resolution.
Nat Commun. 2025 Mar 6;16(1):2247. doi: 10.1038/s41467-025-57425-1.
10
Comprehensive microcrystal electron diffraction sample preparation for cryo-EM.
Nat Protoc. 2025 May;20(5):1275-1309. doi: 10.1038/s41596-024-01088-7. Epub 2024 Dec 20.

本文引用的文献

1
Ab initio phasing macromolecular structures using electron-counted MicroED data.
Nat Methods. 2022 Jun;19(6):724-729. doi: 10.1038/s41592-022-01485-4. Epub 2022 May 30.
2
A modular platform for automated cryo-FIB workflows.
Elife. 2021 Dec 24;10:e70506. doi: 10.7554/eLife.70506.
3
Benchmarking the ideal sample thickness in cryo-EM.
Proc Natl Acad Sci U S A. 2021 Dec 7;118(49). doi: 10.1073/pnas.2108884118.
4
MicroED structure of the human adenosine receptor determined from a single nanocrystal in LCP.
Proc Natl Acad Sci U S A. 2021 Sep 7;118(36). doi: 10.1073/pnas.2106041118.
5
Protocol for the use of focused ion-beam milling to prepare crystalline lamellae for microcrystal electron diffraction (MicroED).
STAR Protoc. 2021 Jul 28;2(3):100686. doi: 10.1016/j.xpro.2021.100686. eCollection 2021 Sep 17.
6
Routine sub-2.5 Å cryo-EM structure determination of GPCRs.
Nat Commun. 2021 Jul 15;12(1):4333. doi: 10.1038/s41467-021-24650-3.
7
A multi-ion plasma FIB study: Determining ion implantation depths of Xe, N, O and Ar in tungsten via atom probe tomography.
Ultramicroscopy. 2021 Sep;228:113334. doi: 10.1016/j.ultramic.2021.113334. Epub 2021 May 30.
8
Three-dimensional imaging of xylem at cell wall level through near field nano holotomography.
Sci Rep. 2021 Feb 25;11(1):4574. doi: 10.1038/s41598-021-83885-8.
10
MicroED structure of lipid-embedded mammalian mitochondrial voltage-dependent anion channel.
Proc Natl Acad Sci U S A. 2020 Dec 22;117(51):32380-32385. doi: 10.1073/pnas.2020010117. Epub 2020 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验