Suppr超能文献

在微电子衍射中使用能量过滤恢复高分辨率信息。

Recovering high-resolution information using energy filtering in MicroED.

作者信息

Clabbers Max T B, Gonen Tamir

机构信息

Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095.

Department of Biological Chemistry, University of California, Los Angeles, CA 90095.

出版信息

bioRxiv. 2025 Mar 26:2025.03.26.645403. doi: 10.1101/2025.03.26.645403.

Abstract

Inelastic scattering poses a significant challenge in electron crystallography by elevating background noise and broadening Bragg peaks, thereby reducing the overall signal-to-noise ratio. This is particularly detrimental to data quality in structural biology, and the diffraction signal is relatively weak. These effects are aggravated even further by the decay of the diffracted intensities as result of accumulated radiation damage, and rapidly fading high-resolution information can disappear beneath the noise. Loss of high-resolution reflections can partly be mitigated using energy filtering, which removes inelastically scattered electrons and improves data quality and resolution. Here, we systematically compared unfiltered and energy-filtered MicroED data from proteinase K crystals, first collecting an unfiltered dataset followed directly by a second sweep using the same settings but with the energy filter inserted. Our results show that energy filtering consistently reduces noise, sharpenes Bragg peaks, and extends high-resolution information, even though the absorbed dose was doubled for the second pass. Importantly, our results demonstrate that high-resolution information can be recovered by inserting the energy filter slit. Energy-filtered datasets showed improved intensity statistics and better internal consistency, highlighting the effectiveness of energy filtering for improving data quality. These findings underscore its potential to overcome limitations in macromolecular electron crystallography, enabling higher-resolution structures with greater reliability.

摘要

非弹性散射在电子晶体学中构成了重大挑战,它会提高背景噪声并使布拉格峰变宽,从而降低整体信噪比。这对结构生物学中的数据质量尤其不利,而且衍射信号相对较弱。由于累积的辐射损伤导致衍射强度衰减,这些影响会进一步加剧,快速衰减的高分辨率信息可能会消失在噪声之下。使用能量过滤可以部分缓解高分辨率反射的损失,它可以去除非弹性散射电子,提高数据质量和分辨率。在这里,我们系统地比较了蛋白酶K晶体的未过滤和能量过滤的微电子衍射(MicroED)数据,首先收集一个未过滤的数据集,然后直接使用相同设置进行第二次扫描,但插入了能量过滤器。我们的结果表明,即使第二次扫描的吸收剂量增加了一倍,能量过滤仍能持续降低噪声、锐化布拉格峰并扩展高分辨率信息。重要的是,我们的结果表明,通过插入能量过滤器狭缝可以恢复高分辨率信息。能量过滤后的数据集显示出更好的强度统计和更高的内部一致性,突出了能量过滤对提高数据质量的有效性。这些发现强调了其克服大分子电子晶体学局限性的潜力,能够获得具有更高可靠性的更高分辨率结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cf2/11974828/5d2aaa6e8f47/nihpp-2025.03.26.645403v1-f0001.jpg

相似文献

1
Recovering high-resolution information using energy filtering in MicroED.
bioRxiv. 2025 Mar 26:2025.03.26.645403. doi: 10.1101/2025.03.26.645403.
2
Recovering high-resolution information using energy filtering in MicroED.
Struct Dyn. 2025 May 13;12(3):034702. doi: 10.1063/4.0000755. eCollection 2025 May.
3
Characterization of energy filtering slit widths for MicroED data collection.
bioRxiv. 2025 Feb 27:2025.02.24.639939. doi: 10.1101/2025.02.24.639939.
4
Energy filtering enables macromolecular MicroED data at sub-atomic resolution.
Nat Commun. 2025 Mar 6;16(1):2247. doi: 10.1038/s41467-025-57425-1.
5
Energy filtering enables macromolecular MicroED data at sub-atomic resolution.
bioRxiv. 2024 Aug 29:2024.08.29.610380. doi: 10.1101/2024.08.29.610380.
8
Electron counting with direct electron detectors in MicroED.
Structure. 2023 Dec 7;31(12):1504-1509.e1. doi: 10.1016/j.str.2023.10.011. Epub 2023 Nov 21.
9
Studying Membrane Protein Structures by MicroED.
Methods Mol Biol. 2021;2302:137-151. doi: 10.1007/978-1-0716-1394-8_8.
10
Modelling dynamical 3D electron diffraction intensities. II. The role of inelastic scattering.
Acta Crystallogr A Found Adv. 2024 Mar 1;80(Pt 2):178-188. doi: 10.1107/S2053273323010690. Epub 2024 Jan 25.

本文引用的文献

1
Energy filtering enables macromolecular MicroED data at sub-atomic resolution.
Nat Commun. 2025 Mar 6;16(1):2247. doi: 10.1038/s41467-025-57425-1.
4
Improving data quality for three-dimensional electron diffraction by a post-column energy filter and a new crystal tracking method.
J Appl Crystallogr. 2022 Nov 29;55(Pt 6):1583-1591. doi: 10.1107/S1600576722009633. eCollection 2022 Dec 1.
5
Ab initio phasing macromolecular structures using electron-counted MicroED data.
Nat Methods. 2022 Jun;19(6):724-729. doi: 10.1038/s41592-022-01485-4. Epub 2022 May 30.
6
Benchmarking the ideal sample thickness in cryo-EM.
Proc Natl Acad Sci U S A. 2021 Dec 7;118(49). doi: 10.1073/pnas.2108884118.
7
Inelastic scattering and solvent scattering reduce dynamical diffraction in biological crystals.
Acta Crystallogr B Struct Sci Cryst Eng Mater. 2019 Aug 1;75(Pt 4):523-531. doi: 10.1107/S2052520619009661.
8
A new cryo-EM system for electron 3D crystallography by eEFD.
J Struct Biol. 2019 May 1;206(2):243-253. doi: 10.1016/j.jsb.2019.03.009. Epub 2019 Mar 27.
9
Analysis of Global and Site-Specific Radiation Damage in Cryo-EM.
Structure. 2018 May 1;26(5):759-766.e4. doi: 10.1016/j.str.2018.03.021. Epub 2018 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验