Suppr超能文献

深度学习与经培训的人工分级员在全国性糖尿病视网膜病变筛查项目中的成本效用分析

Cost-Utility Analysis of Deep Learning and Trained Human Graders for Diabetic Retinopathy Screening in a Nationwide Program.

作者信息

Srisubat Attasit, Kittrongsiri Kankamon, Sangroongruangsri Sermsiri, Khemvaranan Chalida, Shreibati Jacqueline Baras, Ching Jack, Hernandez John, Tiwari Richa, Hersch Fred, Liu Yun, Hanutsaha Prut, Ruamviboonsuk Varis, Turongkaravee Saowalak, Raman Rajiv, Ruamviboonsuk Paisan

机构信息

Department of Medical Services, Ministry of Public Health, Nonthaburi, Thailand.

Social, Economic and Administrative Pharmacy (SEAP) Graduate Program, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.

出版信息

Ophthalmol Ther. 2023 Apr;12(2):1339-1357. doi: 10.1007/s40123-023-00688-y. Epub 2023 Feb 25.

Abstract

INTRODUCTION

Deep learning (DL) for screening diabetic retinopathy (DR) has the potential to address limited healthcare resources by enabling expanded access to healthcare. However, there is still limited health economic evaluation, particularly in low- and middle-income countries, on this subject to aid decision-making for DL adoption.

METHODS

In the context of a middle-income country (MIC), using Thailand as a model, we constructed a decision tree-Markov hybrid model to estimate lifetime costs and outcomes of Thailand's national DR screening program via DL and trained human graders (HG). We calculated the incremental cost-effectiveness ratio (ICER) between the two strategies. Sensitivity analyses were performed to probe the influence of modeling parameters.

RESULTS

From a societal perspective, screening with DL was associated with a reduction in costs of ~ US$ 2.70, similar quality-adjusted life-years (QALY) of + 0.0043, and an incremental net monetary benefit of ~ US$ 24.10 in the base case. In sensitivity analysis, DL remained cost-effective even with a price increase from US$ 1.00 to US$ 4.00 per patient at a Thai willingness-to-pay threshold of ~ US$ 4.997 per QALY gained. When further incorporating recent findings suggesting improved compliance to treatment referral with DL, our analysis models effectiveness benefits of ~ US$ 20 to US$ 50 depending on compliance.

CONCLUSION

DR screening using DL in an MIC using Thailand as a model may result in societal cost-savings and similar health outcomes compared with HG. This study may provide an economic rationale to expand DL-based DR screening in MICs as an alternative solution for limited availability of skilled human resources for primary screening, particularly in MICs with similar prevalence of diabetes and low compliance to referrals for treatment.

摘要

引言

用于筛查糖尿病视网膜病变(DR)的深度学习(DL)有潜力通过扩大医疗服务可及性来解决医疗资源有限的问题。然而,关于这一主题的卫生经济评估仍然有限,尤其是在低收入和中等收入国家,这不利于为采用DL提供决策依据。

方法

在中等收入国家(MIC)的背景下,以泰国为模型,我们构建了一个决策树-马尔可夫混合模型,以估计泰国通过DL和训练有素的人工分级员(HG)进行的国家DR筛查项目的终身成本和结果。我们计算了两种策略之间的增量成本效益比(ICER)。进行敏感性分析以探究建模参数的影响。

结果

从社会角度来看,在基准案例中,使用DL进行筛查可降低成本约2.70美元,质量调整生命年(QALY)增加0.0043,增量净货币效益约为24.10美元。在敏感性分析中,即使每位患者的价格从1.00美元提高到4.00美元,在泰国每获得一个QALY的支付意愿阈值约为4.997美元的情况下,DL仍然具有成本效益。当进一步纳入最近的研究结果,即表明使用DL可提高对治疗转诊的依从性时,我们的分析模型显示,根据依从性不同,效益约为20美元至50美元。

结论

以泰国为模型的中等收入国家使用DL进行DR筛查与使用HG相比,可能会节省社会成本并带来相似的健康结果。本研究可为在中等收入国家扩大基于DL的DR筛查提供经济依据,作为解决初级筛查熟练人力资源有限的替代方案,特别是在糖尿病患病率相似且治疗转诊依从性较低的中等收入国家。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c229/10011252/2112ccb5fdec/40123_2023_688_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验