Suppr超能文献

基于初级保健的、非散瞳自动化视网膜图像分析筛查在低收入糖尿病患者中的五年成本效益建模。

Five-Year Cost-Effectiveness Modeling of Primary Care-Based, Nonmydriatic Automated Retinal Image Analysis Screening Among Low-Income Patients With Diabetes.

机构信息

John F. Hardesty Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO, USA.

Shiley Eye Institute, University of California San Diego School of Medicine, La Jolla, CA, USA.

出版信息

J Diabetes Sci Technol. 2022 Mar;16(2):415-427. doi: 10.1177/1932296820967011. Epub 2020 Oct 30.

Abstract

BACKGROUND

Artificial intelligence-based technology systems offer an alternative solution for diabetic retinopathy (DR) screening compared with standard, in-office dilated eye examinations. We performed a cost-effectiveness analysis of Automated Retinal Image Analysis System (ARIAS)-based DR screening in a primary care medicine clinic that serves a low-income patient population.

METHODS

A model-based, cost-effectiveness analysis of two DR screening systems was created utilizing data from a recent study comparing adherence rates to follow-up eye care among adults ages 18 or older with a clinical diagnosis of diabetes. In the study, the patients were prescreened with an ARIAS-based, nonmydriatic (undilated), point-of-care tool in the primary care setting and were compared with patients with diabetes who were referred for dilated retinal screening without prescreening, as is the current standard of care. Using a Markov model with microsimulation resulting in a total of 600 000 simulated patient experiences, we calculated the incremental cost-utility ratio (ICUR) of the two screening approaches, with regard to five-year cost-effectiveness of DR screening and treatment of vision-threatening DR.

RESULTS

At five years, ARIAS-based screening showed similar utility as the standard of care screening systems. However, ARIAS reduced costs by 23.3%, with an ICUR of $258 721.81 comparing the current practice to ARIAS.

CONCLUSIONS

Primary care-based ARIAS DR screening is cost-effective when compared with standard of care screening methods.

摘要

背景

与标准的、在办公室进行的散瞳眼部检查相比,基于人工智能的技术系统为糖尿病视网膜病变(DR)筛查提供了另一种解决方案。我们在一家为低收入患者群体服务的基层医疗诊所中,对基于自动化视网膜图像分析系统(ARIAS)的 DR 筛查进行了成本效益分析。

方法

利用最近一项比较了在基层医疗环境中使用基于 ARIAS 的非散瞳(不散瞳)即时护理点工具进行预筛查的成年糖尿病患者与未经预筛查而转诊接受散瞳视网膜筛查的患者之间对后续眼科护理的依从率的数据,我们建立了一种基于模型的、针对两种 DR 筛查系统的成本效益分析。在研究中,患者在基层医疗环境中使用基于 ARIAS 的非散瞳即时护理点工具进行预筛查,并与未经预筛查而转诊接受散瞳视网膜筛查的糖尿病患者进行比较,这是目前的标准护理。使用具有微模拟的马尔可夫模型,总共模拟了 600000 名患者的体验,我们计算了两种筛查方法的增量成本效用比(ICUR),并考虑了 DR 筛查和治疗威胁视力的 DR 的五年成本效益。

结果

在五年时,基于 ARIAS 的筛查与标准护理筛查系统具有相似的效用。然而,ARIAS 降低了 23.3%的成本,当前实践与 ARIAS 相比的 ICUR 为 258721.81 美元。

结论

与标准护理筛查方法相比,基于基层医疗的 ARIAS DR 筛查具有成本效益。

相似文献

引用本文的文献

7
Challenges and Potential of Artificial Intelligence in Neuroradiology.人工智能在神经放射学中的挑战与潜力。
Clin Neuroradiol. 2024 Jun;34(2):293-305. doi: 10.1007/s00062-024-01382-7. Epub 2024 Jan 29.

本文引用的文献

4
Artificial Intelligence to Detect Papilledema from Ocular Fundus Photographs.人工智能检测眼底照片中的视乳头水肿。
N Engl J Med. 2020 Apr 30;382(18):1687-1695. doi: 10.1056/NEJMoa1917130. Epub 2020 Apr 14.
8
Artificial intelligence in glaucoma.人工智能在青光眼领域的应用。
Curr Opin Ophthalmol. 2019 Mar;30(2):97-103. doi: 10.1097/ICU.0000000000000552.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验