Suppr超能文献

微生物关键分类群驱动植物残体化学的演替。

Microbial keystone taxa drive succession of plant residue chemistry.

机构信息

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.

Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.

出版信息

ISME J. 2023 May;17(5):748-757. doi: 10.1038/s41396-023-01384-2. Epub 2023 Feb 25.

Abstract

Managing above-ground plant carbon inputs can pave the way toward carbon neutrality and mitigating climate change. Chemical complexity of plant residues largely controls carbon sequestration. There exist conflicting opinions on whether residue chemistry diverges or converges after long-term decomposition. Moreover, whether and how microbial communities regulate residue chemistry remains unclear. This study investigated the decomposition processes and residue composition dynamics of maize straw and wheat straw and related microbiomes over a period of 9 years in three climate zones. Residue chemistry exhibited a divergent-convergent trajectory during decomposition, that is, the residue composition diverged during the 0.5-3 year period under the combined effect of straw type and climate and then converged to an array of common compounds during the 3-9 year period. Chemical divergence during the first 2-3 years was primarily driven by the changes in extracellular enzyme activity influenced by keystone taxa-guided bacterial networks, and the keystone taxa belonged to Alphaproteobacteria, particularly Rhizobiales. After 9 years, microbial assimilation became dominant, leading to chemical convergence, and fungi, particularly Chaetomium, were the main contributors to microbial assimilation. Overall, this study demonstrated that keystone taxa regulate the divergent-convergent trajectory in residue chemistry.

摘要

管理地上植物碳输入可以为实现碳中和和减缓气候变化铺平道路。植物残体的化学复杂性在很大程度上控制着碳的固存。关于长期分解后残体化学是否存在分歧或趋同,存在相互矛盾的观点。此外,微生物群落是否以及如何调节残体化学仍然不清楚。本研究在三个气候带中,对玉米秸秆和小麦秸秆的分解过程和残体组成动态及其相关微生物组进行了长达 9 年的研究。在秸秆类型和气候的综合作用下,残体化学在分解的前 0.5-3 年内表现出一种发散-收敛的轨迹,即残体组成在 2-3 年内发生分歧,然后在 3-9 年内收敛到一系列常见化合物。前 2-3 年内的化学发散主要是由受关键类群引导的细菌网络影响的胞外酶活性变化驱动的,关键类群属于α变形菌门,特别是根瘤菌目。9 年后,微生物同化作用占主导地位,导致化学趋同,真菌,特别是毛壳菌,是微生物同化作用的主要贡献者。总的来说,本研究表明,关键类群调节了残体化学的发散-收敛轨迹。

相似文献

4
Bacterial Keystone Taxa Regulate Carbon Metabolism in the Earthworm Gut.细菌关键分类群调控蚯蚓肠道中的碳代谢。
Microbiol Spectr. 2022 Oct 26;10(5):e0108122. doi: 10.1128/spectrum.01081-22. Epub 2022 Aug 16.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验