Suppr超能文献

匹配天然脊髓的力学异质性可增强 3D 打印支架中的轴突渗透。

Matching mechanical heterogeneity of the native spinal cord augments axon infiltration in 3D-printed scaffolds.

机构信息

Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA.

Department of Bioengineering, Rice University, Houston, TX, USA.

出版信息

Biomaterials. 2023 Apr;295:122061. doi: 10.1016/j.biomaterials.2023.122061. Epub 2023 Feb 16.

Abstract

Scaffolds delivered to injured spinal cords to stimulate axon connectivity often match the anisotropy of native tissue using guidance cues along the rostral-caudal axis, but current approaches do not mimic the heterogeneity of host tissue mechanics. Although white and gray matter have different mechanical properties, it remains unclear whether tissue mechanics also vary along the length of the cord. Mechanical testing performed in this study indicates that bulk spinal cord mechanics do differ along anatomical level and that these differences are caused by variations in the ratio of white and gray matter. These results suggest that scaffolds recreating the heterogeneity of spinal cord tissue mechanics must account for the disparity between gray and white matter. Digital light processing (DLP) provides a means to mimic spinal cord topology, but has previously been limited to printing homogeneous mechanical properties. We describe a means to modify DLP to print scaffolds that mimic spinal cord mechanical heterogeneity caused by variation in the ratio of white and gray matter, which improves axon infiltration compared to controls exhibiting homogeneous mechanical properties. These results demonstrate that scaffolds matching the mechanical heterogeneity of white and gray matter improve the effectiveness of biomaterials transplanted within the injured spinal cord.

摘要

用于刺激损伤脊髓轴突连接的支架通常使用沿着头尾轴的导向线索来匹配固有组织的各向异性,但目前的方法并不能模拟宿主组织力学的异质性。尽管白质和灰质具有不同的机械性能,但尚不清楚组织力学是否也沿着脊髓的长度而变化。本研究中的力学测试表明,脊髓的整体力学性能确实沿着解剖水平而有所不同,并且这些差异是由白质和灰质比例的变化引起的。这些结果表明,重建脊髓组织力学异质性的支架必须考虑灰质和白质之间的差异。数字光处理 (DLP) 提供了一种模拟脊髓拓扑结构的方法,但以前仅限于打印均匀的机械性能。我们描述了一种修改 DLP 以打印支架的方法,该支架可以模拟由白质和灰质比例变化引起的脊髓机械异质性,与表现出均匀机械性能的对照相比,这可以改善轴突浸润。这些结果表明,匹配白质和灰质机械异质性的支架可以提高生物材料在损伤脊髓内移植的效果。

相似文献

1
Matching mechanical heterogeneity of the native spinal cord augments axon infiltration in 3D-printed scaffolds.
Biomaterials. 2023 Apr;295:122061. doi: 10.1016/j.biomaterials.2023.122061. Epub 2023 Feb 16.
2
Biomimetic 3D-printed scaffolds for spinal cord injury repair.
Nat Med. 2019 Feb;25(2):263-269. doi: 10.1038/s41591-018-0296-z. Epub 2019 Jan 14.
3
Aligned hydrogel tubes guide regeneration following spinal cord injury.
Acta Biomater. 2019 Mar 1;86:312-322. doi: 10.1016/j.actbio.2018.12.052. Epub 2019 Jan 2.
5
Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds.
Biomaterials. 2010 Sep;31(26):6719-29. doi: 10.1016/j.biomaterials.2010.04.035. Epub 2010 Jun 17.
6
Cell-seeded alginate hydrogel scaffolds promote directed linear axonal regeneration in the injured rat spinal cord.
Acta Biomater. 2015 Nov;27:140-150. doi: 10.1016/j.actbio.2015.09.001. Epub 2015 Sep 5.
8
Templated agarose scaffolds for the support of motor axon regeneration into sites of complete spinal cord transection.
Biomaterials. 2013 Feb;34(5):1529-36. doi: 10.1016/j.biomaterials.2012.10.070. Epub 2012 Nov 23.
10
Olfactory ensheathing cells seeded decellularized scaffold promotes axonal regeneration in spinal cord injury rats.
J Biomed Mater Res A. 2021 May;109(5):779-787. doi: 10.1002/jbm.a.37066. Epub 2020 Aug 22.

引用本文的文献

1
Tissue-dependent mechanosensing by cells derived from human tumors.
NPJ Biol Phys Mech. 2025;2(1):19. doi: 10.1038/s44341-025-00023-5. Epub 2025 Aug 6.
2
Structure-Inspired Lineage-Specific Matrix for Endogenous Neurogenesis in Spinal Cord Injury.
Research (Wash D C). 2025 Aug 7;8:0821. doi: 10.34133/research.0821. eCollection 2025.
4
Development of Hydrogels Fabricated via Stereolithography for Bioengineering Applications.
Polymers (Basel). 2025 Mar 14;17(6):765. doi: 10.3390/polym17060765.
5
Spinal cord injury repair based on drug and cell delivery: From remodeling microenvironment to relay connection formation.
Mater Today Bio. 2025 Feb 4;31:101556. doi: 10.1016/j.mtbio.2025.101556. eCollection 2025 Apr.
6
Biomaterial strategies for regulating the neuroinflammatory response.
Mater Adv. 2024 Apr 10;5(10):4025-4054. doi: 10.1039/d3ma00736g. eCollection 2024 May 20.
7
Custom-engineered hydrogels for delivery of human iPSC-derived neurons into the injured cervical spinal cord.
Biomaterials. 2024 Mar;305:122400. doi: 10.1016/j.biomaterials.2023.122400. Epub 2023 Nov 17.
8
Recent advances in 3D printable conductive hydrogel inks for neural engineering.
Nano Converg. 2023 Sep 7;10(1):41. doi: 10.1186/s40580-023-00389-z.

本文引用的文献

3
Magnetic alignment of injectable hydrogel scaffolds for spinal cord injury repair.
Biomater Sci. 2022 May 4;10(9):2237-2247. doi: 10.1039/d1bm01590g.
4
Collective durotaxis of cohesive cell clusters on a stiffness gradient.
Eur Phys J E Soft Matter. 2022 Jan 24;45(1):7. doi: 10.1140/epje/s10189-021-00150-6.
5
Collective durotaxis along a self-generated stiffness gradient in vivo.
Nature. 2021 Dec;600(7890):690-694. doi: 10.1038/s41586-021-04210-x. Epub 2021 Dec 8.
7
SARS-CoV-2 Spike Protein Disrupts Blood-Brain Barrier Integrity via RhoA Activation.
J Neuroimmune Pharmacol. 2021 Dec;16(4):722-728. doi: 10.1007/s11481-021-10029-0. Epub 2021 Oct 23.
8
Conductive and injectable hyaluronic acid/gelatin/gold nanorod hydrogels for enhanced surgical translation and bioprinting.
J Biomed Mater Res A. 2022 Feb;110(2):365-382. doi: 10.1002/jbm.a.37294. Epub 2021 Aug 14.
9
Durotaxis: the mechanical control of directed cell migration.
FEBS J. 2022 May;289(10):2736-2754. doi: 10.1111/febs.15862. Epub 2021 May 7.
10
Vascular bioprinting with enzymatically degradable bioinks via multi-material projection-based stereolithography.
Acta Biomater. 2020 Nov;117:121-132. doi: 10.1016/j.actbio.2020.09.033. Epub 2020 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验