Department of Neuroscience, University of California San Diego, La Jolla, CA, USA.
Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA.
Nat Med. 2019 Feb;25(2):263-269. doi: 10.1038/s41591-018-0296-z. Epub 2019 Jan 14.
Current methods for bioprinting functional tissue lack appropriate biofabrication techniques to build complex 3D microarchitectures essential for guiding cell growth and promoting tissue maturation. 3D printing of central nervous system (CNS) structures has not been accomplished, possibly owing to the complexity of CNS architecture. Here, we report the use of a microscale continuous projection printing method (μCPP) to create a complex CNS structure for regenerative medicine applications in the spinal cord. μCPP can print 3D biomimetic hydrogel scaffolds tailored to the dimensions of the rodent spinal cord in 1.6 s and is scalable to human spinal cord sizes and lesion geometries. We tested the ability of µCPP 3D-printed scaffolds loaded with neural progenitor cells (NPCs) to support axon regeneration and form new 'neural relays' across sites of complete spinal cord injury in vivo in rodents. We find that injured host axons regenerate into 3D biomimetic scaffolds and synapse onto NPCs implanted into the device and that implanted NPCs in turn extend axons out of the scaffold and into the host spinal cord below the injury to restore synaptic transmission and significantly improve functional outcomes. Thus, 3D biomimetic scaffolds offer a means of enhancing CNS regeneration through precision medicine.
当前的生物打印功能组织的方法缺乏适当的生物制造技术来构建复杂的 3D 微结构,这对于指导细胞生长和促进组织成熟是必不可少的。中枢神经系统 (CNS) 结构的 3D 打印尚未完成,这可能是由于 CNS 结构的复杂性。在这里,我们报告了使用微尺度连续投影打印方法 (μCPP) 来创建用于脊髓再生医学应用的复杂 CNS 结构。μCPP 可以在 1.6 秒内打印出与啮齿动物脊髓尺寸相匹配的 3D 仿生水凝胶支架,并且可扩展到人类脊髓的尺寸和损伤的几何形状。我们测试了负载有神经祖细胞 (NPC) 的 μCPP 3D 打印支架的能力,以支持体内啮齿动物完全性脊髓损伤部位的轴突再生并形成新的“神经中继”。我们发现,受伤的宿主轴突再生到 3D 仿生支架中,并与植入到装置中的 NPC 形成突触,而植入的 NPC 反过来又将轴突从支架中延伸出来并进入损伤下方的宿主脊髓,以恢复突触传递并显著改善功能结果。因此,3D 仿生支架为通过精准医学增强中枢神经系统再生提供了一种手段。