Gaponenko Y, Yasnou V, Mialdun A, Bou-Ali M M, Nepomnyashchy A, Shevtsova V
Microgravity Research Center, Université libre de Bruxelles (ULB), 50, Ave. F.D. Roosevelt, Brussels B-1050, Belgium.
Mechanical and Manufacturing Department, Mondragon University, Loramendi 4, Mondragon 20500, Spain.
Philos Trans A Math Phys Eng Sci. 2023 Apr 17;381(2245):20220079. doi: 10.1098/rsta.2022.0079. Epub 2023 Feb 27.
We present an experimental and two-phase computational study of convection in a liquid bridge ([Formula: see text]) that develops under the action of a parallel gas flow. The study focuses on tracking the evolution of hydrothermal waves by increasing the applied temperature difference [Formula: see text] and the temperature of gas moving at the velocity [Formula: see text]. Our experiments revealed certain regularity in the change of oscillatory states with an increase in the control parameters. Above the instability threshold, the nonlinear dynamics passes through three oscillatory regimes, which are repeated in a somewhat similar way at higher values of the control parameters. They are periodic, quasi-periodic with two or three frequencies and multi-frequency state when the Fourier spectrum is filled with clusters of duplex, triplex or higher numbers of frequencies. Three-dimensional numerical simulation, complemented by a deep spectral analysis, sheds light on the evolution of the flow pattern observed in experiments. The developed methodology identified conditions for the existence of a multi-frequency regime such as the presence of a weak low-frequency mode that can modulate strong high-frequency modes, the existence of strong azimuthal modes with different wavenumbers and the [Formula: see text] mode, and the structured combination of peaks in the Fourier spectrum. This article is part of the theme issue 'New trends in pattern formation and nonlinear dynamics of extended systems'.
我们展示了在平行气流作用下形成的液桥([公式:见原文])中对流的实验和两相计算研究。该研究聚焦于通过增加施加的温差[公式:见原文]以及以速度[公式:见原文]流动的气体的温度来追踪热液波的演化。我们的实验揭示了随着控制参数增加振荡状态变化的某些规律。在不稳定性阈值之上,非线性动力学经历三种振荡状态,在较高控制参数值时以某种相似的方式重复出现。它们是周期性的、具有两个或三个频率的准周期性以及傅里叶频谱充满双频、三频或更高频率簇时的多频状态。三维数值模拟辅以深入的频谱分析,揭示了实验中观察到的流型演化。所开发的方法确定了多频状态存在的条件,例如存在可调制强高频模式的弱低频模式、具有不同波数的强方位模式和[公式:见原文]模式,以及傅里叶频谱中峰值的结构化组合。本文是主题特刊“扩展系统中模式形成和非线性动力学的新趋势”的一部分。