Suppr超能文献

惯性微流控中具有粘度对比的液膜不稳定性。

Instability of a liquid sheet with viscosity contrast in inertial microfluidics.

机构信息

Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany.

出版信息

Eur Phys J E Soft Matter. 2021 Nov 29;44(11):144. doi: 10.1140/epje/s10189-021-00147-1.

Abstract

Flows at moderate Reynolds numbers in inertial microfluidics enable high throughput and inertial focusing of particles and cells with relevance in biomedical applications. In the present work, we consider a viscosity-stratified three-layer flow in the inertial regime. We investigate the interfacial instability of a liquid sheet surrounded by a density-matched but more viscous fluid in a channel flow. We use linear stability analysis based on the Orr-Sommerfeld equation and direct numerical simulations with the lattice Boltzmann method (LBM) to perform an extensive parameter study. Our aim is to contribute to a controlled droplet production in inertial microfluidics. In the first part, on the linear stability analysis we show that the growth rate of the fastest growing mode [Formula: see text] increases with the Reynolds number [Formula: see text] and that its wavelength [Formula: see text] is always smaller than the channel width w for sufficiently small interfacial tension [Formula: see text]. For thin sheets we find the scaling relation [Formula: see text], where m is viscosity ratio and [Formula: see text] the sheet thickness. In contrast, for thicker sheets [Formula: see text] decreases with increasing [Formula: see text] or m due to the nearby channel walls. Examining the eigenvalue spectra, we identify Yih modes at the interface. In the second part on the LBM simulations, the thin liquid sheet develops two distinct dynamic states: waves traveling along the interface and breakup into droplets with bullet shape. For smaller flow rates and larger sheet thicknesses, we also observe ligament formation and the sheet eventually evolves irregularly. Our work gives some indication how droplet formation can be controlled with a suitable parameter set [Formula: see text].

摘要

在惯性微流中,中等雷诺数下的流动可以实现高通量和颗粒与细胞的惯性聚焦,这在生物医学应用中具有重要意义。在本工作中,我们考虑了惯性区的三层粘度分层流动。我们研究了在通道流中被密度匹配但粘性更大的流体包围的液膜的界面不稳定性。我们使用基于 Orr-Sommerfeld 方程的线性稳定性分析和晶格 Boltzmann 方法(LBM)的直接数值模拟来进行广泛的参数研究。我们的目的是为惯性微流中的受控液滴产生做出贡献。在第一部分的线性稳定性分析中,我们表明,最快增长模式[Formula: see text]的增长率随雷诺数[Formula: see text]的增加而增加,并且当界面张力[Formula: see text]足够小时,其波长[Formula: see text]总是小于通道宽度 w。对于薄的液膜,我们发现标度关系[Formula: see text],其中 m 是粘度比,[Formula: see text]是液膜厚度。相比之下,对于较厚的液膜,由于附近的通道壁,[Formula: see text]随[Formula: see text]或 m 的增加而减小。通过检查特征值谱,我们在界面处识别出 Yih 模式。在第二部分的 LBM 模拟中,薄液膜表现出两种截然不同的动态状态:沿界面传播的波和以子弹形状分裂成液滴。对于较小的流速和较大的液膜厚度,我们还观察到韧带的形成,最终液膜会变得不规则。我们的工作为如何通过适当的参数集[Formula: see text]控制液滴形成提供了一些线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/379d/8629957/6fff84555644/10189_2021_147_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验