Suppr超能文献

多螺旋纳米微导电聚合物结构的电磁响应及其多尺度手性协同效应增强衰减的机制。

Electromagnetic Response of Multistage-Helical Nano-Micro Conducting Polymer Structures and their Enhanced Attenuation Mechanism of Multiscale-Chiral Synergistic Effect.

机构信息

Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.

出版信息

Small. 2023 May;19(21):e2300233. doi: 10.1002/smll.202300233. Epub 2023 Feb 26.

Abstract

Nowadays, the rapidly development of advanced antidetection technology raises stringent requirements for microwave absorption materials (MAMs) to focus more attention on wider bandwidth, thinner thickness, and lower density. Adding magnetic medium to realize broadband absorption may usually result in the decline of service performance and accelerating corrosion of MAMs. Chiral MAMs can produce extra magnetic loss without adding magnetic medium due to the unique electromagnetic cross polarization effect. However, more efforts should be taken to furtherly promote efficient bandwidth of chiral MAMs and reveal attenuation mode and modulation method of chiral structure. Herein, a novel superhelical nano-microstructure based on chiral polyaniline and helical polypyrrole is successfully achieved via in situ polymerization strategy. The enhanced multiscale-chiral synergistic effect contributes to broaden effective absorption bandwidth, covering 8.6 GHz at the thickness of 3.6 mm, and the minimum reflection loss can reach -51.3 dB simultaneously. Besides, to further explain response modes and loss mechanism of superhelical nano-microstructures, the electromagnetic simulation and test analysis are applied together to reveal their synergistic enhancement attenuation mechanism. Taken together, this strategy gives a new thought of how to design, prepare, and optimize the hierarchical structure materials to achieving broadband and high-performance microwave absorption.

摘要

如今,先进的反检测技术的快速发展对微波吸收材料(MAMs)提出了更严格的要求,需要更关注更宽的带宽、更薄的厚度和更低的密度。添加磁性介质以实现宽带吸收通常会导致 MAMs 的服务性能下降和加速腐蚀。手性 MAMs 由于独特的电磁交叉极化效应,可以在不添加磁性介质的情况下产生额外的磁损耗。然而,需要进一步努力来进一步提高手性 MAMs 的有效带宽,并揭示手性结构的衰减模式和调制方法。本文通过原位聚合策略成功地获得了一种基于手性聚苯胺和螺旋聚吡咯的新型超螺旋纳米结构。增强的多尺度手性协同效应有助于拓宽有效吸收带宽,在 3.6 毫米的厚度下覆盖 8.6GHz,同时最小反射损耗可达-51.3dB。此外,为了进一步解释超螺旋纳米结构的响应模式和损耗机制,应用了电磁模拟和测试分析来揭示它们的协同增强衰减机制。总之,该策略为设计、制备和优化分层结构材料以实现宽带和高性能微波吸收提供了新的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验