Suppr超能文献

中心型肥胖与肥胖相关合并症的关系:基于 2011-2018 年 NHANES 研究。

The relationship between fat distribution in central region and comorbidities in obese people: Based on NHANES 2011-2018.

机构信息

Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.

Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.

出版信息

Front Endocrinol (Lausanne). 2023 Feb 8;14:1114963. doi: 10.3389/fendo.2023.1114963. eCollection 2023.

Abstract

BACKGROUND

Central obesity is closely related to comorbidity, while the relationship between fat accumulation pattern and abnormal distribution in different parts of the central region of obese people and comorbidity is not clear. This study aimed to explore the relationship between fat distribution in central region and comorbidity among obese participants.

METHODS

We used observational data of NHANES 2011-2018 to identify 12 obesity-related comorbidities in 7 categories based on questionnaire responses from participants. Fat distribution is expressed by fat ratio, including Android, Gynoid, visceral, subcutaneous, visceral/subcutaneous (V/S), and total abdominal fat ratio. Logistic regression analysis were utilized to elucidate the association between fat distribution and comorbidity.

RESULTS

The comorbidity rate was about 54.1% among 4899 obese participants (weighted 60,180,984, 41.35 ± 11.16 years, 57.5% female). There were differences in fat distribution across the sexes and ages. Among men, Android fat ratio (OR, 4.21, 95% CI, 1.54-11.50, P=0.007), visceral fat ratio (OR, 2.16, 95% CI, 1.42-3.29, P<0.001) and V/S (OR, 2.07, 95% CI, 1.43-2.99, P<0.001) were independent risk factors for comorbidity. Among these, there was a "J" shape correlation between Android fat ratio and comorbidity risk, while visceral fat ratio and V/S exhibited linear relationships with comorbidity risk. The Gynoid fat ratio (OR, 0.87, 95%CI, 0.80-0.95, P=0.001) and subcutaneous fat ratio (OR, 0.81, 95%CI, 0.67-0.98, P=0.016) both performed a protective role in the risk of comorbidity. In women, Android fat ratio (OR, 4.65, 95% CI, 2.11-10.24, P=0.020), visceral fat ratio (OR, 1.83, 95% CI, 1.31-2.56, P=0.001), and V/S (OR, 1.80, 95% CI, 1.32-2.45, P=0.020) were also independent risk factors for comorbidity, with a dose-response relationship similar to that of men. Only the Gynoid fat ratio (OR, 0.93, 95% CI, 0.87-0.99, P=0.016) had a protective effect on female comorbidity. This association was also seen in obese participants of different age groups, comorbidity numbers, and comorbidity types, although it was more statistically significant in older, complex comorbidity, cardiovascular, cerebrovascular, and metabolic diseases.

CONCLUSIONS

In the obese population, there were strong correlation between fat distribution in central region and comorbidity, which was affected by sex, age, number of comorbidities, and type of comorbidity.

摘要

背景

中心性肥胖与合并症密切相关,而肥胖人群中心区脂肪堆积模式与不同部位脂肪分布异常与合并症之间的关系尚不清楚。本研究旨在探讨中心区脂肪分布与肥胖参与者合并症之间的关系。

方法

我们使用 NHANES 2011-2018 年的观察性数据,根据参与者问卷回答确定了 7 个类别中的 12 种肥胖相关合并症。脂肪分布用脂肪比表示,包括安卓、女性型、内脏、皮下、内脏/皮下(V/S)和总腹部脂肪比。采用 logistic 回归分析阐明脂肪分布与合并症之间的关系。

结果

4899 名肥胖参与者(加权 60180984 人,年龄 41.35±11.16 岁,57.5%为女性)的合并症发生率约为 54.1%。不同性别和年龄的脂肪分布存在差异。在男性中,安卓脂肪比(OR,4.21,95%CI,1.54-11.50,P=0.007)、内脏脂肪比(OR,2.16,95%CI,1.42-3.29,P<0.001)和 V/S(OR,2.07,95%CI,1.43-2.99,P<0.001)是合并症的独立危险因素。其中,安卓脂肪比与合并症风险之间存在“J”形相关性,而内脏脂肪比和 V/S 与合并症风险呈线性关系。女性型脂肪比(OR,0.87,95%CI,0.80-0.95,P=0.001)和皮下脂肪比(OR,0.81,95%CI,0.67-0.98,P=0.016)对合并症风险具有保护作用。在女性中,安卓脂肪比(OR,4.65,95%CI,2.11-10.24,P=0.020)、内脏脂肪比(OR,1.83,95%CI,1.31-2.56,P=0.001)和 V/S(OR,1.80,95%CI,1.32-2.45,P=0.020)也是合并症的独立危险因素,与男性相似,呈剂量反应关系。只有女性型脂肪比(OR,0.93,95%CI,0.87-0.99,P=0.016)对女性合并症有保护作用。这种关联在不同年龄组、合并症数量和合并症类型的肥胖参与者中也存在,尽管在年龄较大、合并症较复杂、心血管、脑血管和代谢性疾病中更为显著。

结论

在肥胖人群中,中心区脂肪分布与合并症之间存在很强的相关性,这种相关性受性别、年龄、合并症数量和合并症类型的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8aa/9945539/3f87c868e3cb/fendo-14-1114963-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验