Suppr超能文献

生物标志物在新冠病毒疾病死亡中的预测作用。

Predictive Role of Biomarkers in COVID-19 Mortality.

作者信息

Yılmaz Ayşe, Taşkın Öztürk, Demir Ufuk, Soylu Veysel G

机构信息

Anesthesiology and Reanimation, Kastamonu University Faculty of Medicine, Kastamonu, TUR.

Intensive Care Unit, Kastamonu University Faculty of Medicine, Kastamonu, TUR.

出版信息

Cureus. 2023 Jan 24;15(1):e34173. doi: 10.7759/cureus.34173. eCollection 2023 Jan.

Abstract

Background The coronavirus disease 2019 (COVID-19) pandemic has resulted in high mortality among patients in critical intensive care units. Hence, identifying mortality markers in the follow-up and treatment of these patients is essential. This study aimed to evaluate the relationships between mortality rates in patients with COVID-19 and the neutrophil/lymphocyte ratio (NLR), derived NLR (dNLR), platelet/lymphocyte ratio (PLR), monocyte/lymphocyte ratio (MLR), systemic inflammation response index (SII), and systemic inflammatory response index (SIRI). Methodology In this study, we assessed 466 critically ill patients diagnosed with COVID-19 in the adult intensive care unit of Kastamonu Training and Research Hospital. Age, gender, and comorbidities were recorded at the time of admission along with NLR, dNLR, MLR, PLR, SII, and SIRI values from hemogram data. Acute Physiology and Chronic Health Evaluation II (APACHE II) scores and mortality rates over 28 days were recorded. Patients were divided into survival (n = 128) and non-survival (n = 338) groups according to 28-day mortality. Results A statistically significant difference was found between leukocyte, neutrophil, dNLR, APACHE II, and SIRI parameters between the surviving and non-surviving groups. A logistic regression analysis of independent variables of 28-day mortality identified significant associations between dNLR (p = 0.002) and APACHE II score (p < 0.001) and 28-day mortality. Conclusions Inflammatory biomarkers and APACHE II score appear to be good predictive values for mortality in COVID-19 infection. The dNLR value was more effective than other biomarkers in estimating mortality due to COVID-19. In our study, the cut-off value for dNLR was 3.64.

摘要

背景 2019 冠状病毒病(COVID-19)大流行导致重症监护病房患者的高死亡率。因此,在这些患者的随访和治疗中识别死亡率标志物至关重要。本研究旨在评估 COVID-19 患者的死亡率与中性粒细胞/淋巴细胞比值(NLR)、衍生 NLR(dNLR)、血小板/淋巴细胞比值(PLR)、单核细胞/淋巴细胞比值(MLR)、全身炎症反应指数(SII)和全身炎症反应指标(SIRI)之间的关系。

方法 在本研究中,我们评估了开塞利培训与研究医院成人重症监护病房中 466 例被诊断为 COVID-19 的重症患者。入院时记录年龄、性别和合并症,同时记录血常规数据中的 NLR、dNLR、MLR、PLR、SII 和 SIRI 值。记录急性生理与慢性健康状况评估 II(APACHE II)评分和 28 天内的死亡率。根据 28 天死亡率将患者分为存活组(n = 128)和非存活组(n = 338)。

结果 存活组和非存活组之间的白细胞、中性粒细胞、dNLR、APACHE II 和 SIRI 参数存在统计学上的显著差异。对 28 天死亡率的自变量进行逻辑回归分析,发现 dNLR(p = 0.002)和 APACHE II 评分(p < 0.001)与 28 天死亡率之间存在显著关联。

结论 炎症生物标志物和 APACHE II 评分似乎对 COVID-19 感染的死亡率具有良好的预测价值。dNLR 值在估计 COVID-19 导致的死亡率方面比其他生物标志物更有效。在我们的研究中,dNLR 的临界值为 3.64。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a671/9950690/4fc352ae9717/cureus-0015-00000034173-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验