Suppr超能文献

第三代生物燃料与生物电化学系统的整合:现状与未来展望。

Integration of third generation biofuels with bio-electrochemical systems: Current status and future perspective.

作者信息

Khandelwal Amitap, Chhabra Meenu, Lens Piet N L

机构信息

Ryan Institute, School of Natural Sciences, University of Galway, Galway, Ireland.

Environmental Biotechnology Lab, Department of Biosciences & Bioengineering, Indian Institute of Technology, Jodhpur, India.

出版信息

Front Plant Sci. 2023 Feb 10;14:1081108. doi: 10.3389/fpls.2023.1081108. eCollection 2023.

Abstract

Biofuels hold particular promise as these can replace fossil fuels. Algae, in particular, are envisioned as a sustainable source of third-generation biofuels. Algae also produce several low volume high-value products, which enhance their prospects of use in a biorefinery. Bio-electrochemical systems such as microbial fuel cell (MFC) can be used for algae cultivation and bioelectricity production. MFCs find applications in wastewater treatment, CO sequestration, heavy metal removal and bio-remediation. Oxidation of electron donor by microbial catalysts in the anodic chamber gives electrons (reducing the anode), CO and electrical energy. The electron acceptor at the cathode can be oxygen/NO /NO /metal ions. However, the need for a continuous supply of terminal electron acceptor in the cathode can be eliminated by growing algae in the cathodic chamber, as they produce enough oxygen through photosynthesis. On the other hand, conventional algae cultivation systems require periodic oxygen quenching, which involves further energy consumption and adds cost to the process. Therefore, the integration of algae cultivation and MFC technology can eliminate the need of oxygen quenching and external aeration in the MFC system and thus make the overall process sustainable and a net energy producer. In addition to this, the CO gas produced in the anodic chamber can promote the algal growth in the cathodic chamber. Hence, the energy and cost invested for CO transportation in an open pond system can be saved. In this context, the present review outlines the bottlenecks of first- and second-generation biofuels along with the conventional algae cultivation systems such as open ponds and photobioreactors. Furthermore, it discusses about the process sustainability and efficiency of integrating algae cultivation with MFC technology in detail.

摘要

生物燃料具有特殊的前景,因为它们可以替代化石燃料。特别是藻类,被视为第三代生物燃料的可持续来源。藻类还能生产几种少量的高价值产品,这增强了它们在生物精炼厂中的应用前景。生物电化学系统,如微生物燃料电池(MFC),可用于藻类培养和生物电生产。MFC在废水处理、二氧化碳封存、重金属去除和生物修复方面都有应用。在阳极室中,微生物催化剂将电子供体氧化产生电子(使阳极还原)、二氧化碳和电能。阴极的电子受体可以是氧气/一氧化氮/二氧化氮/金属离子。然而,通过在阴极室中培养藻类,可以消除阴极对终端电子受体持续供应的需求,因为藻类通过光合作用产生足够的氧气。另一方面,传统的藻类培养系统需要定期进行氧气淬灭,这会消耗更多能量并增加工艺成本。因此,藻类培养与MFC技术的整合可以消除MFC系统中对氧气淬灭和外部曝气的需求,从而使整个过程具有可持续性并成为净能源生产者。除此之外,阳极室产生的二氧化碳气体可以促进阴极室中藻类的生长。因此,可以节省在开放池塘系统中运输二氧化碳所投入的能量和成本。在此背景下,本综述概述了第一代和第二代生物燃料以及传统藻类培养系统(如开放池塘和光生物反应器)的瓶颈。此外,还详细讨论了藻类培养与MFC技术整合的过程可持续性和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60cb/9950272/bfb6bcfc19f0/fpls-14-1081108-g001.jpg

相似文献

1
Integration of third generation biofuels with bio-electrochemical systems: Current status and future perspective.
Front Plant Sci. 2023 Feb 10;14:1081108. doi: 10.3389/fpls.2023.1081108. eCollection 2023.
2
Sustainable production of biofuels from the algae-derived biomass.
Bioprocess Biosyst Eng. 2023 Aug;46(8):1077-1097. doi: 10.1007/s00449-022-02796-8. Epub 2022 Nov 4.
5
Performance evaluation of algae assisted microbial fuel cell under outdoor conditions.
Bioresour Technol. 2020 Aug;310:123418. doi: 10.1016/j.biortech.2020.123418. Epub 2020 Apr 21.
6
Technical insights into the production of green fuel from CO sequestered algal biomass: A conceptual review on green energy.
Sci Total Environ. 2021 Feb 10;755(Pt 2):142636. doi: 10.1016/j.scitotenv.2020.142636. Epub 2020 Oct 2.
7
Algae as green energy reserve: Technological outlook on biofuel production.
Chemosphere. 2020 Mar;242:125079. doi: 10.1016/j.chemosphere.2019.125079. Epub 2019 Oct 14.
8
Microbial fuel cell powered by lipid extracted algae: A promising system for algal lipids and power generation.
Bioresour Technol. 2018 Jan;247:520-527. doi: 10.1016/j.biortech.2017.09.119. Epub 2017 Sep 20.
9
Turning harmful algal biomass to electricity by microbial fuel cell: A sustainable approach for waste management.
Environ Pollut. 2020 Nov;266(Pt 2):115373. doi: 10.1016/j.envpol.2020.115373. Epub 2020 Aug 15.
10
Bioelectrochemical systems using microalgae - A concise research update.
Chemosphere. 2017 Jun;177:35-43. doi: 10.1016/j.chemosphere.2017.02.132. Epub 2017 Feb 27.

引用本文的文献

1
electrochemical monitoring with an open circuit auxiliary electrode in microbial electrochemical cells treating sediments.
RSC Adv. 2025 Jun 25;15(27):21568-21581. doi: 10.1039/d5ra03133h. eCollection 2025 Jun 23.
2
Laser-Induced Graphene for Electrochemical Sensing of Antioxidants in Biodiesel.
ACS Omega. 2024 Nov 19;10(1):368-377. doi: 10.1021/acsomega.4c06339. eCollection 2025 Jan 14.

本文引用的文献

1
Sustainable bioelectricity generation using Cladophora sp. as a biocathode in membrane-less microbial fuel cell.
Bioresour Technol. 2022 Mar;347:126704. doi: 10.1016/j.biortech.2022.126704. Epub 2022 Jan 11.
2
Genetic engineering of microalgae for enhanced lipid production.
Biotechnol Adv. 2021 Nov 15;52:107836. doi: 10.1016/j.biotechadv.2021.107836. Epub 2021 Sep 14.
4
Unconventional high-value products from microalgae: A review.
Bioresour Technol. 2021 Jun;329:124895. doi: 10.1016/j.biortech.2021.124895. Epub 2021 Feb 27.
5
Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19: Mini review.
Bioresour Technol Rep. 2021 Feb;13:100623. doi: 10.1016/j.biteb.2020.100623. Epub 2020 Dec 29.
6
An overview on engineering the surface area and porosity of biochar.
Sci Total Environ. 2021 Apr 1;763:144204. doi: 10.1016/j.scitotenv.2020.144204. Epub 2020 Dec 25.
8
Chlorella vulgaris on the cathode promoted the performance of sediment microbial fuel cells for electrogenesis and pollutant removal.
Sci Total Environ. 2020 Aug 1;728:138011. doi: 10.1016/j.scitotenv.2020.138011. Epub 2020 Mar 17.
9
Performance evaluation of algae assisted microbial fuel cell under outdoor conditions.
Bioresour Technol. 2020 Aug;310:123418. doi: 10.1016/j.biortech.2020.123418. Epub 2020 Apr 21.
10
A review of high value-added molecules production by microalgae in light of the classification.
Biotechnol Adv. 2020 Jul-Aug;41:107545. doi: 10.1016/j.biotechadv.2020.107545. Epub 2020 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验