文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

掺有硫化亚铁的三维聚己内酯支架可改善大鼠颅骨缺损模型中的新骨形成和血管生成。

FeS-incorporated 3D PCL scaffold improves new bone formation and neovascularization in a rat calvarial defect model.

作者信息

Kang Donggu, Lee Yoon Bum, Yang Gi Hoon, Choi Eunjeong, Nam Yoonju, Lee Jeong-Seok, Lee KyoungHo, Kim Kil Soo, Yeo MyungGu, Yoon Gil-Sang, An SangHyun, Jeon Hojun

机构信息

Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., Ansan, Gyeonggi-Do, 15588, South Korea.

Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Dong-gu, Daegu 41061, South Korea.

出版信息

Int J Bioprint. 2022 Nov 4;9(1):636. doi: 10.18063/ijb.v9i1.636. eCollection 2023.


DOI:10.18063/ijb.v9i1.636
PMID:36844239
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9947485/
Abstract

199Three-dimensional (3D) scaffolds composed of various biomaterials, including metals, ceramics, and synthetic polymers, have been widely used to regenerate bone defects. However, these materials possess clear downsides, which prevent bone regeneration. Therefore, composite scaffolds have been developed to compensate these disadvantages and achieve synergetic effects. In this study, a naturally occurring biomineral, FeS, was incorporated in PCL scaffolds to enhance the mechanical properties, which would in turn influence the biological characteristics. The composite scaffolds consisting of different weight fractions of FeS were 3D printed and compared to pure PCL scaffold. The surface roughness (5.77-fold) and the compressive strength (3.38-fold) of the PCL scaffold was remarkably enhanced in a dose-dependent manner. The results showed that the group with PCL/ FeS scaffold implanted had increased neovascularization and bone formation (2.9-fold). These results demonstrated that the FeS incorporated PCL scaffold might be an effective bioimplant for bone tissue regeneration.

摘要

由包括金属、陶瓷和合成聚合物在内的各种生物材料组成的三维(3D)支架已被广泛用于骨缺损的再生。然而,这些材料存在明显的缺点,阻碍了骨再生。因此,已开发出复合支架来弥补这些缺点并实现协同效应。在本研究中,一种天然存在的生物矿物FeS被掺入聚己内酯(PCL)支架中以增强机械性能,这反过来又会影响生物学特性。对由不同重量分数的FeS组成的复合支架进行3D打印,并与纯PCL支架进行比较。PCL支架的表面粗糙度(提高了5.77倍)和抗压强度(提高了3.38倍)以剂量依赖的方式显著增强。结果表明,植入PCL/FeS支架的组新生血管形成和骨形成增加(提高了2.9倍)。这些结果表明,掺入FeS的PCL支架可能是一种有效的骨组织再生生物植入物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/9947485/6dc818683407/IJB-9-1-636-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/9947485/2910bc7b7b93/IJB-9-1-636-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/9947485/04f387da782f/IJB-9-1-636-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/9947485/b29273f4558e/IJB-9-1-636-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/9947485/675380a4e5d8/IJB-9-1-636-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/9947485/1deb3f76e04d/IJB-9-1-636-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/9947485/898f8bcc9e5c/IJB-9-1-636-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/9947485/6dc818683407/IJB-9-1-636-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/9947485/2910bc7b7b93/IJB-9-1-636-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/9947485/04f387da782f/IJB-9-1-636-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/9947485/b29273f4558e/IJB-9-1-636-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/9947485/675380a4e5d8/IJB-9-1-636-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/9947485/1deb3f76e04d/IJB-9-1-636-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/9947485/898f8bcc9e5c/IJB-9-1-636-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98b/9947485/6dc818683407/IJB-9-1-636-g007.jpg

相似文献

[1]
FeS-incorporated 3D PCL scaffold improves new bone formation and neovascularization in a rat calvarial defect model.

Int J Bioprint. 2022-11-4

[2]
Stem Cell-Seeded 3D-Printed Scaffolds Combined with Self-Assembling Peptides for Bone Defect Repair.

Tissue Eng Part A. 2022-2

[3]
Incorporation of BMP-2 nanoparticles on the surface of a 3D-printed hydroxyapatite scaffold using an ε-polycaprolactone polymer emulsion coating method for bone tissue engineering.

Colloids Surf B Biointerfaces. 2018-6-20

[4]
Evaluation of mechanical strength and bone regeneration ability of 3D printed kagome-structure scaffold using rabbit calvarial defect model.

Mater Sci Eng C Mater Biol Appl. 2019-1-14

[5]
3D-printed poly(Ɛ-caprolactone) scaffold with gradient mechanical properties according to force distribution in the mandible for mandibular bone tissue engineering.

J Mech Behav Biomed Mater. 2020-4

[6]
3D-printed MgO nanoparticle loaded polycaprolactone β-tricalcium phosphate composite scaffold for bone tissue engineering applications: In-vitro and in-vivo evaluation.

J Biomed Mater Res A. 2023-3

[7]
3D-printed Mg-incorporated PCL-based scaffolds: A promising approach for bone healing.

Mater Sci Eng C Mater Biol Appl. 2021-10

[8]
Bone formation with functionalized 3D printed poly-ε-caprolactone scaffold with plasma-rich-fibrin implanted in critical-sized calvaria defect of rat.

J Dent Sci. 2021-10

[9]
Three-Dimensional Printing of Bone Extracellular Matrix for Craniofacial Regeneration.

ACS Biomater Sci Eng. 2016-10-10

[10]
3D printing of metal-organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration.

Nanoscale. 2020-12-23

引用本文的文献

[1]
A Multidisciplinary Evaluation of Three-Dimensional Polycaprolactone Bioactive Glass Scaffolds for Bone Tissue Engineering Purposes.

Materials (Basel). 2024-5-17

[2]
Neuro-bone tissue engineering: emerging mechanisms, potential strategies, and current challenges.

Bone Res. 2023-12-20

[3]
Bioinformatic analysis of the molecular mechanisms underlying the progression of bone defects.

Front Med (Lausanne). 2023-6-8

本文引用的文献

[1]
Metal-based nanoparticles for bone tissue engineering.

J Tissue Eng Regen Med. 2020-12

[2]
Inkjet Bioprinting of Biomaterials.

Chem Rev. 2020-10-14

[3]
Endothelial cells produce angiocrine factors to regulate bone and cartilage via versatile mechanisms.

Theranostics. 2020-5-1

[4]
3D printing of ceramic-based scaffolds for bone tissue engineering: an overview.

J Mater Chem B. 2018-7-21

[5]
Vat polymerization-based bioprinting-process, materials, applications and regulatory challenges.

Biofabrication. 2020-2-7

[6]
Bone Fracture Acute Phase Response-A Unifying Theory of Fracture Repair: Clinical and Scientific Implications.

Clin Rev Bone Miner Metab. 2018

[7]
3D-Printed Bioactive Calcium Silicate/Poly-ε-Caprolactone Bioscaffolds Modified with Biomimetic Extracellular Matrices for Bone Regeneration.

Int J Mol Sci. 2019-2-21

[8]
3D-printed scaffolds of mesoporous bioglass/gliadin/polycaprolactone ternary composite for enhancement of compressive strength, degradability, cell responses and new bone tissue ingrowth.

Int J Nanomedicine. 2018-9-17

[9]
Magnesium phosphate ceramics incorporating a novel indene compound promote osteoblast differentiation in vitro and bone regeneration in vivo.

Biomaterials. 2017-12-7

[10]
Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.

Biofabrication. 2017-11-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索