Anggara Kelvin, Ochner Hannah, Szilagyi Sven, Malavolti Luigi, Rauschenbach Stephan, Kern Klaus
Max-Planck Institute for Solid-State Research, Heisenbergstrasse 1, Stuttgart DE-70569, Germany.
Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.
ACS Cent Sci. 2022 Dec 14;9(2):151-158. doi: 10.1021/acscentsci.2c00815. eCollection 2023 Feb 22.
Molecule-surface collisions are known to initiate dynamics that lead to products inaccessible by thermal chemistry. These collision dynamics, however, have mostly been examined on bulk surfaces, leaving vast opportunities unexplored for molecular collisions on nanostructures, especially on those that exhibit mechanical properties radically different from those of their bulk counterparts. Probing energy-dependent dynamics on nanostructures, particularly for large molecules, has been challenging due to their fast time scales and high structural complexity. Here, by examining the dynamics of a protein impinging on a freestanding, single-atom-thick membrane, we discover dynamics that disperse the collision impact away from the incident protein within a few picoseconds. As a result, our experiments and calculations show that cytochrome c retains its gas-phase folded structure when it collides onto freestanding single-layer graphene at low energies (∼20 meV/atom). The dynamics, expected to be operative on many freestanding atomic membranes, enable reliable means to transfer gas-phase macromolecular structures onto freestanding surfaces for their single-molecule imaging, complementing many bioanalytical techniques.
已知分子与表面的碰撞会引发一些动力学过程,这些过程会产生热化学无法得到的产物。然而,这些碰撞动力学大多是在块状表面上进行研究的,对于纳米结构上的分子碰撞,尤其是那些表现出与块状对应物截然不同机械性能的纳米结构,仍有大量机会未被探索。由于其快速的时间尺度和高结构复杂性,探测纳米结构上能量依赖的动力学,特别是对于大分子来说,一直具有挑战性。在这里,通过研究蛋白质撞击独立的单原子厚膜的动力学,我们发现了在几皮秒内将碰撞影响从入射蛋白质分散开的动力学。结果,我们的实验和计算表明,细胞色素c在低能量(约20毫电子伏特/原子)下与独立的单层石墨烯碰撞时,能保持其气相折叠结构。预计这种动力学在许多独立的原子膜上都起作用,它为将气相大分子结构转移到独立表面以进行单分子成像提供了可靠方法,补充了许多生物分析技术。