Gayathri Padinchare Veettil, Nair Divya, Gopinath Girish, Pilla Devika, Joseph Shijo
Department of Climate Variability and Aquatic Ecosystems, Kerala University of Fisheries and Ocean Studies (KUFOS), Puduveypu P O, Kochi, 682508 India.
Directorate of Research, Kerala University of Fisheries and Ocean Studies (KUFOS), Panangad P O, Kochi, 682506 India.
Water Air Soil Pollut. 2023;234(3):146. doi: 10.1007/s11270-023-06148-4. Epub 2023 Feb 17.
Photo-driven advanced oxidation process (AOP) with pharmaceutical wastewater has been poorly investigated so far. This paper presents the results of an experimental investigation on the photocatalytic degradation of emerging pharmaceutical contaminant chloroquine (CLQ) in water using zinc oxide (ZnO) nanoparticles as the catalyst and solar light (SL) as the source of energy. The catalyst was characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDAX), and transmission electron microscopy (TEM). The effect of various operating parameters such as catalyst loading, the concentration of target substrate, pH, and the effect of oxidants and anions (salts) on the efficiency of degradation was tested. The degradation follows pseudo-first-order kinetics. Surprisingly, contrary to the observation in most photocatalytic studies, the degradation is more efficient under solar radiation, with 77% under solar (SL) irradiation and 65% under UV light in 60 min. The degradation leads to slow and complete COD removal through several intermediates identified by the liquid chromatography-mass spectrometry (LC-MS) technique. The results suggest the possibility of using inexpensive natural, non-renewable solar energy for the purification of CLQ-contaminated water, thereby enabling the reuse of scarce water resources.
迄今为止,光驱动高级氧化工艺(AOP)处理制药废水的研究还很少。本文介绍了以氧化锌(ZnO)纳米颗粒为催化剂、太阳光(SL)为能源,对水中新兴制药污染物氯喹(CLQ)进行光催化降解的实验研究结果。通过X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、扫描电子显微镜-能量色散X射线分析(SEM-EDAX)和透射电子显微镜(TEM)对催化剂进行了表征。测试了各种操作参数,如催化剂负载量、目标底物浓度、pH值以及氧化剂和阴离子(盐)对降解效率的影响。降解遵循准一级动力学。令人惊讶的是,与大多数光催化研究的观察结果相反,在太阳辐射下的降解效率更高,在60分钟内,太阳光(SL)照射下的降解率为77%,紫外光照射下的降解率为65%。通过液相色谱-质谱(LC-MS)技术鉴定的几种中间体,降解导致化学需氧量(COD)缓慢且完全去除。结果表明,利用廉价的天然非可再生太阳能净化受CLQ污染的水具有可能性,从而实现稀缺水资源的再利用。