Fadinger-Held Victor, Windisch Daniel
Institute for Mathematics and Scientific Computing, Universität Graz, Heinrichstraße 36, Graz, 8010 Austria.
Max-Planck-Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany.
Arch Math. 2024;123(2):123-135. doi: 10.1007/s00013-024-02001-0. Epub 2024 Jun 7.
Let be a Krull domain admitting a prime element with finite residue field and let be its quotient field. We show that for all positive integers and , there exists an integer-valued polynomial on , that is, an element of , which has precisely essentially different factorizations into irreducible elements of whose lengths are exactly . Using this, we characterize lengths of factorizations when is a unique factorization domain and therefore also in case is a discrete valuation domain. This solves an open problem proposed by Cahen, Fontana, Frisch, and Glaz.
设(R)是一个承认有一个具有有限剩余域的素元的克鲁尔域,且设(Q)是其商域。我们证明,对于所有正整数(m)和(n),存在一个(Q)上的整值多项式,即(R[X])中的一个元素,它恰有(m)种本质上不同的分解为(R[X])中长度恰好为(n)的不可约元的因式分解。利用这一点,当(R)是唯一分解整环时,进而在(R)是离散赋值环的情形下,我们刻画了因式分解的长度。这解决了由卡恩、丰塔纳、弗里施和格拉兹提出的一个公开问题。