Suppr超能文献

利用天气因素和谷歌数据预测澳大利亚墨尔本的新冠病毒传播:一种时间序列预测模型。

Using weather factors and google data to predict COVID-19 transmission in Melbourne, Australia: A time-series predictive model.

作者信息

McClymont Hannah, Si Xiaohan, Hu Wenbiao

机构信息

School of Public Health and Social Work, Queensland University of Technology, Brisbane, Queensland, Australia.

出版信息

Heliyon. 2023 Mar;9(3):e13782. doi: 10.1016/j.heliyon.2023.e13782. Epub 2023 Feb 21.

Abstract

BACKGROUND

Forecast models have been essential in understanding COVID-19 transmission and guiding public health responses throughout the pandemic. This study aims to assess the effect of weather variability and Google data on COVID-19 transmission and develop multivariable time series AutoRegressive Integrated Moving Average (ARIMA) models for improving traditional predictive modelling for informing public health policy.

METHODS

COVID-19 case notifications, meteorological factors and Google data were collected over the B.1.617.2 (Delta) outbreak in Melbourne, Australia from August to November 2021. Timeseries cross-correlation (TSCC) was used to evaluate the temporal correlation between weather factors, Google search trends, Google Mobility data and COVID-19 transmission. Multivariable time series ARIMA models were fitted to forecast COVID-19 incidence and Effective Reproductive Number (R ) in the Greater Melbourne region. Five models were fitted to compare and validate predictive models using moving three-day ahead forecasts to test the predictive accuracy for both COVID-19 incidence and R over the Melbourne Delta outbreak.

RESULTS

Case-only ARIMA model resulted in an R squared (R) value of 0.942, Root Mean Square Error (RMSE) of 141.59, and Mean Absolute Percentage Error (MAPE) of 23.19. The model including transit station mobility (TSM) and maximum temperature (Tmax) had greater predictive accuracy with R 0.948, RMSE 137.57, and MAPE 21.26.

CONCLUSION

Multivariable ARIMA modelling for COVID-19 cases and was useful for predicting epidemic growth, with higher predictive accuracy for models including TSM and Tmax. These results suggest that TSM and Tmax would be useful for further exploration for developing weather-informed early warning models for future COVID-19 outbreaks with potential application for the inclusion of weather and Google data with disease surveillance in developing effective early warning systems for informing public health policy and epidemic response.

摘要

背景

在整个新冠疫情期间,预测模型对于理解新冠病毒传播及指导公共卫生应对措施至关重要。本研究旨在评估天气变化和谷歌数据对新冠病毒传播的影响,并开发多变量时间序列自回归积分移动平均(ARIMA)模型,以改进传统预测模型,为公共卫生政策提供依据。

方法

收集了2021年8月至11月澳大利亚墨尔本B.1.617.2(德尔塔)毒株疫情期间的新冠病例通报、气象因素和谷歌数据。采用时间序列交叉相关性(TSCC)评估天气因素、谷歌搜索趋势、谷歌移动性数据与新冠病毒传播之间的时间相关性。拟合多变量时间序列ARIMA模型,以预测大墨尔本地区的新冠发病率和有效再生数(R)。拟合了五个模型,使用提前三天的移动预测来比较和验证预测模型,以测试墨尔本德尔塔疫情期间新冠发病率和R的预测准确性。

结果

仅病例的ARIMA模型的决定系数(R平方)值为0.942,均方根误差(RMSE)为141.59,平均绝对百分比误差(MAPE)为23.19。包含交通枢纽移动性(TSM)和最高温度(Tmax)的模型具有更高的预测准确性,R为0.948,RMSE为137.57,MAPE为21.26。

结论

针对新冠病例和R的多变量ARIMA建模有助于预测疫情增长,包含TSM和Tmax的模型预测准确性更高。这些结果表明,TSM和Tmax对于进一步探索开发基于天气的早期预警模型很有用,这些模型可用于未来新冠疫情爆发,并有可能将天气和谷歌数据与疾病监测相结合,以开发有效的早期预警系统,为公共卫生政策和疫情应对提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11a9/9988469/d52c3756e213/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验