Suppr超能文献

图像质量评估:结构与纹理相似性的统一。

Image Quality Assessment: Unifying Structure and Texture Similarity.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 May;44(5):2567-2581. doi: 10.1109/TPAMI.2020.3045810. Epub 2022 Apr 1.

Abstract

Objective measures of image quality generally operate by comparing pixels of a "degraded" image to those of the original. Relative to human observers, these measures are overly sensitive to resampling of texture regions (e.g., replacing one patch of grass with another). Here, we develop the first full-reference image quality model with explicit tolerance to texture resampling. Using a convolutional neural network, we construct an injective and differentiable function that transforms images to multi-scale overcomplete representations. We demonstrate empirically that the spatial averages of the feature maps in this representation capture texture appearance, in that they provide a set of sufficient statistical constraints to synthesize a wide variety of texture patterns. We then describe an image quality method that combines correlations of these spatial averages ("texture similarity") with correlations of the feature maps ("structure similarity"). The parameters of the proposed measure are jointly optimized to match human ratings of image quality, while minimizing the reported distances between subimages cropped from the same texture images. Experiments show that the optimized method explains human perceptual scores, both on conventional image quality databases, as well as on texture databases. The measure also offers competitive performance on related tasks such as texture classification and retrieval. Finally, we show that our method is relatively insensitive to geometric transformations (e.g., translation and dilation), without use of any specialized training or data augmentation. Code is available at https://github.com/dingkeyan93/DISTS.

摘要

客观的图像质量度量方法通常通过比较“退化”图像和原始图像的像素来进行操作。与人类观察者相比,这些度量方法对于纹理区域的重采样(例如,用另一片草替换一片草)过于敏感。在这里,我们开发了第一个具有明确纹理重采样容限的全参考图像质量模型。我们使用卷积神经网络构建了一个可注入且可微分的函数,将图像转换为多尺度过完备表示。我们通过实验证明,该表示中的特征图的空间平均值捕获了纹理外观,因为它们提供了一组足够的统计约束,可以合成各种纹理模式。然后,我们描述了一种图像质量方法,该方法结合了这些空间平均值的相关性(“纹理相似性”)与特征图的相关性(“结构相似性”)。所提出的度量的参数是联合优化的,以匹配人类对图像质量的评分,同时最小化从相同纹理图像裁剪的子图像之间报告的距离。实验表明,该优化方法解释了人类的感知评分,无论是在传统的图像质量数据库上,还是在纹理数据库上。该度量方法在相关任务(如纹理分类和检索)中也具有竞争力的性能。最后,我们表明我们的方法对几何变换(例如平移和缩放)相对不敏感,而无需使用任何专门的训练或数据增强。代码可在 https://github.com/dingkeyan93/DISTS 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验