Suppr超能文献

GPAT/AGPAT 基因家族在肝细胞癌中的预后价值及其在肿瘤免疫微环境中的作用。

The prognostic value of the GPAT/AGPAT gene family in hepatocellular carcinoma and its role in the tumor immune microenvironment.

机构信息

Organ Transplantation Clinical Medical Center of Xiamen University, Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.

Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China.

出版信息

Front Immunol. 2023 Feb 10;14:1026669. doi: 10.3389/fimmu.2023.1026669. eCollection 2023.

Abstract

BACKGROUND

Liver cancer is the sixth most commonly diagnosed cancer and the third leading cause of cancer-related death worldwide. Hepatocellular carcinoma accounts for an estimated 90% of all liver cancers. Many enzymes of the GPAT/AGPAT family are required for the synthesis of triacylglycerol. Expression of AGPAT isoenzymes has been reported to be associated with an increased risk of tumorigenesis or development of aggressive phenotypes in a variety of cancers. However, whether members of the GPAT/AGPAT gene family also influence the pathophysiology of HCC is unknown.

METHODS

Hepatocellular carcinoma datasets were obtained from the TCGA and ICGC databases. Predictive models related to the GPAT/AGPAT gene family were constructed based on LASSO-Cox regression using the ICGC-LIRI dataset as an external validation cohort. Seven immune cell infiltration algorithms were used to analyze immune cell infiltration patterns in different risk groups. IHC, CCK-8, Transwell assay, and Western blotting were used for in vitro validation.

RESULTS

Compared with low-risk patients, high-risk patients had shorter survival and higher risk scores. Multivariate Cox regression analysis showed that risk score was a significant independent predictor of overall survival (OS) after adjustment for confounding clinical factors (p < 0.001). The established nomogram combined risk score and TNM staging to accurately predict survival at 1, 3, and 5 years in patients with HCC with AUC values of 0.807, 0.806, and 0.795, respectively. This risk score improved the reliability of the nomogram and guided clinical decision-making. In addition, we comprehensively analyzed immune cell infiltration (using seven algorithms), response to immune checkpoint blockade, clinical relevance, survival, mutations, mRNA expression-based stemness index, signaling pathways, and interacting proteins related to the three core genes of the prognostic model (AGPAT5, LCLAT1, and LPCAT1). We also performed preliminary validation of the differential expression, oncological phenotype, and potential downstream pathways of the three core genes by IHC, CCK-8, Transwell assay, and Western blotting.

CONCLUSION

These results improve our understanding of the function of GPAT/AGPAT gene family members and provide a reference for prognostic biomarker research and individualized treatment of HCC.

摘要

背景

肝癌是全球第六大常见癌症,也是癌症相关死亡的第三大主要原因。肝细胞癌约占所有肝癌的 90%。甘油三酯的合成需要 GPAT/AGPAT 家族的许多酶。已报道 AGPAT 同工酶的表达与多种癌症的肿瘤发生或侵袭性表型的发展风险增加有关。然而,GPAT/AGPAT 基因家族的成员是否也影响 HCC 的病理生理学尚不清楚。

方法

从 TCGA 和 ICGC 数据库中获取肝细胞癌数据集。使用 ICGC-LIRI 数据集作为外部验证队列,基于 LASSO-Cox 回归构建与 GPAT/AGPAT 基因家族相关的预测模型。使用七种免疫细胞浸润算法分析不同风险组的免疫细胞浸润模式。免疫组化、CCK-8、Transwell 测定和 Western blot 用于体外验证。

结果

与低危患者相比,高危患者的生存时间更短,风险评分更高。多因素 Cox 回归分析显示,风险评分是调整混杂临床因素后总生存期(OS)的显著独立预测因子(p<0.001)。建立的列线图将风险评分与 TNM 分期相结合,可准确预测 HCC 患者 1、3 和 5 年的生存率,AUC 值分别为 0.807、0.806 和 0.795。该风险评分提高了列线图的可靠性,并指导了临床决策。此外,我们全面分析了免疫细胞浸润(使用七种算法)、对免疫检查点阻断的反应、临床相关性、生存、突变、基于 mRNA 表达的干性指数、信号通路以及与预后模型的三个核心基因(AGPAT5、LCLAT1 和 LPCAT1)相关的相互作用蛋白。我们还通过免疫组化、CCK-8、Transwell 测定和 Western blot 对三个核心基因的差异表达、肿瘤表型和潜在下游途径进行了初步验证。

结论

这些结果提高了我们对 GPAT/AGPAT 基因家族成员功能的理解,为 HCC 的预后生物标志物研究和个体化治疗提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ec/9950581/8cdaa9637dab/fimmu-14-1026669-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验