Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697-2525, USA.
F1000Res. 2022 Nov 4;11:1254. doi: 10.12688/f1000research.127469.2. eCollection 2022.
A growing population of cells accumulates mutations. A single mutation early in the growth process carries forward to all descendant cells, causing the final population to have a lot of mutant cells. When the first mutation happens later in growth, the final population typically has fewer mutants. The number of mutant cells in the final population follows the Luria-Delbrück distribution. The mathematical form of the distribution is known only from its probability generating function. For larger populations of cells, one typically uses computer simulations to estimate the distribution. This article searches for a simple approximation of the Luria-Delbrück distribution, with an explicit mathematical form that can be used easily in calculations. The Fréchet distribution provides a good approximation for the Luria-Delbrück distribution for neutral mutations, which do not cause a growth rate change relative to the original cells. The Fréchet distribution apparently provides a good match through its description of extreme value problems for multiplicative processes such as exponential growth.
细胞数量的增长会积累突变。在生长过程的早期,一个单一的突变会传递给所有的后代细胞,导致最终的细胞群体中存在大量的突变细胞。当第一个突变发生在生长后期时,最终的细胞群体中通常会有较少的突变体。最终细胞群体中的突变细胞数量遵循 Luria-Delbrück 分布。该分布的数学形式仅从其概率生成函数中可知。对于更大的细胞群体,人们通常使用计算机模拟来估计分布。本文寻找 Luria-Delbrück 分布的简单近似,其具有明确的数学形式,便于在计算中使用。Fréchet 分布为中性突变(相对于原始细胞不改变生长速率)的 Luria-Delbrück 分布提供了很好的近似。Fréchet 分布显然通过描述乘法过程(如指数增长)的极值问题提供了很好的匹配。