Suppr超能文献

反向水泡生长模型解释了细胞机械适应过程中的巨大液泡动力学。

Model of inverse bleb growth explains giant vacuole dynamics during cell mechanoadaptation.

作者信息

Cairoli Andrea, Spenlehauer Alice, Overby Darryl R, Lee Chiu Fan

机构信息

Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.

出版信息

PNAS Nexus. 2022 Dec 23;2(2):pgac304. doi: 10.1093/pnasnexus/pgac304. eCollection 2023 Feb.

Abstract

Cells can withstand hostile environmental conditions manifest as large mechanical forces such as pressure gradients and/or shear stresses by dynamically changing their shape. Such conditions are realized in the Schlemm's canal of the eye where endothelial cells that cover the inner vessel wall are subjected to the hydrodynamic pressure gradients exerted by the aqueous humor outflow. These cells form fluid-filled dynamic outpouchings of their basal membrane called . The inverses of giant vacuoles are reminiscent of cellular blebs, extracellular cytoplasmic protrusions triggered by local temporary disruption of the contractile actomyosin cortex. Inverse blebbing has also been first observed experimentally during sprouting angiogenesis, but its underlying physical mechanisms are poorly understood. Here, we hypothesize that giant vacuole formation can be described as inverse blebbing and formulate a biophysical model of this process. Our model elucidates how cell membrane mechanical properties affect the morphology and dynamics of giant vacuoles and predicts coarsening akin to Ostwald ripening between multiple invaginating vacuoles. Our results are in qualitative agreement with observations from the formation of giant vacuoles during perfusion experiments. Our model not only elucidates the biophysical mechanisms driving inverse blebbing and giant vacuole dynamics, but also identifies universal features of the cellular response to pressure loads that are relevant to many experimental contexts.

摘要

细胞可以通过动态改变其形状来承受恶劣的环境条件,这些条件表现为诸如压力梯度和/或剪切应力等巨大的机械力。在眼睛的小梁网中就存在这样的条件,覆盖内血管壁的内皮细胞受到房水流出所施加的流体动力压力梯度的作用。这些细胞形成了其基底膜的充满液体的动态外突,称为。巨大液泡的反面让人联想到细胞泡,即由收缩性肌动球蛋白皮质的局部暂时破坏引发的细胞外细胞质突起。反向泡化最初也是在发芽血管生成过程中通过实验观察到的,但其潜在的物理机制却知之甚少。在这里,我们假设巨大液泡的形成可以被描述为反向泡化,并建立了这个过程的生物物理模型。我们的模型阐明了细胞膜的力学性质如何影响巨大液泡的形态和动力学,并预测了多个内陷液泡之间类似于奥斯特瓦尔德熟化的粗化现象。我们的结果与灌注实验中巨大液泡形成的观察结果在定性上是一致的。我们的模型不仅阐明了驱动反向泡化和巨大液泡动力学的生物物理机制,还确定了细胞对压力负荷反应的普遍特征,这些特征与许多实验背景相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67ca/9944300/335743dd41f3/pgac304fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验