Casarrubios Ana M, Pérez-Atencio Leonel F, Martín Cristina, Ibarz José M, Mañas Eva, Paul David L, Barrio Luis C
Units of Experimental Neurology and Sleep Apnea, Hospital "Ramón y Cajal" (IRYCIS), Madrid, Spain.
Ph.D. Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid, Spain.
Front Neurosci. 2023 Feb 8;17:1045269. doi: 10.3389/fnins.2023.1045269. eCollection 2023.
Periodic Cheyne-Stokes breathing (CSB) oscillating between apnea and crescendo-decrescendo hyperpnea is the most common central apnea. Currently, there is no proven therapy for CSB, probably because the fundamental pathophysiological question of how the respiratory center generates this form of breathing instability is still unresolved. Therefore, we aimed to determine the respiratory motor pattern of CSB resulting from the interaction of inspiratory and expiratory oscillators and identify the neural mechanism responsible for breathing regularization induced by the supplemental CO administration. Analysis of the inspiratory and expiratory motor pattern in a transgenic mouse model lacking connexin-36 electrical synapses, the neonatal (P14) Cx36 knockout male mouse, with a persistent CSB, revealed that the reconfigurations recurrent between apnea and hyperpnea and vice versa result from cyclical turn on/off of active expiration driven by the expiratory oscillator, which acts as a master pacemaker of respiration and entrains the inspiratory oscillator to restore ventilation. The results also showed that the suppression of CSB by supplemental 12% CO in inhaled air is due to the stabilization of coupling between expiratory and inspiratory oscillators, which causes the regularization of respiration. CSB rebooted after washout of CO excess when the inspiratory activity depressed again profoundly, indicating that the disability of the inspiratory oscillator to sustain ventilation is the triggering factor of CSB. Under these circumstances, the expiratory oscillator activated by the cyclic increase of CO behaves as an "anti-apnea" center generating the crescendo-decrescendo hyperpnea and periodic breathing. The neurogenic mechanism of CSB identified highlights the plasticity of the two-oscillator system in the neural control of respiration and provides a rationale base for CO therapy.
周期性陈-施呼吸(CSB)在呼吸暂停和渐强-渐弱型呼吸增强之间振荡,是最常见的中枢性呼吸暂停。目前,尚无经证实的治疗CSB的方法,这可能是因为呼吸中枢如何产生这种呼吸不稳定形式的基本病理生理问题仍未解决。因此,我们旨在确定由吸气和呼气振荡器相互作用产生的CSB的呼吸运动模式,并确定补充二氧化碳给药诱导呼吸节律规整的神经机制。对缺乏连接蛋白-36电突触的转基因小鼠模型(新生(P14)Cx36基因敲除雄性小鼠)进行持续CSB时的吸气和呼气运动模式分析,结果显示,呼吸暂停和呼吸增强之间反复出现的重新配置,反之亦然,是由呼气振荡器驱动的主动呼气的周期性开启/关闭导致的,呼气振荡器充当呼吸的主起搏器,并带动吸气振荡器恢复通气。结果还表明,吸入空气中补充12%的二氧化碳对CSB的抑制作用,是由于呼气和吸气振荡器之间耦合的稳定,从而导致呼吸节律规整。当吸气活动再次严重抑制时,二氧化碳过量被洗脱后CSB重新出现,这表明吸气振荡器维持通气的功能障碍是CSB的触发因素。在这种情况下,由二氧化碳周期性增加激活的呼气振荡器表现为一个“抗呼吸暂停”中枢,产生渐强-渐弱型呼吸增强和周期性呼吸。所确定的CSB的神经机制突出了双振荡器系统在呼吸神经控制中的可塑性,并为二氧化碳治疗提供了理论基础。