Department of Physiology and Pathology, School of Dentistry, São Paulo State University , São Paulo , Brazil.
Department of Pharmacology, Institute of Biomedical Science, University of São Paulo , São Paulo , Brazil.
Am J Physiol Lung Cell Mol Physiol. 2018 Nov 1;315(5):L891-L909. doi: 10.1152/ajplung.00011.2018. Epub 2018 Sep 6.
The retrotrapezoid nucleus (RTN) contains chemosensitive cells that distribute CO-dependent excitatory drive to the respiratory network. This drive facilitates the function of the respiratory central pattern generator (rCPG) and increases sympathetic activity. It is also evidenced that during hypercapnia, the late-expiratory (late-E) oscillator in the parafacial respiratory group (pFRG) is activated and determines the emergence of active expiration. However, it remains unclear the microcircuitry responsible for the distribution of the excitatory signals to the pFRG and the rCPG in conditions of high CO. Herein, we hypothesized that excitatory inputs from chemosensitive neurons in the RTN are necessary for the activation of late-E neurons in the pFRG. Using the decerebrated in situ rat preparation, we found that lesions of neurokinin-1 receptor-expressing neurons in the RTN region with substance P-saporin conjugate suppressed the late-E activity in abdominal nerves (AbNs) and sympathetic nerves (SNs) and attenuated the increase in phrenic nerve (PN) activity induced by hypercapnia. On the other hand, kynurenic acid (100 mM) injections in the pFRG eliminated the late-E activity in AbN and thoracic SN but did not modify PN response during hypercapnia. Iontophoretic injections of retrograde tracer into the pFRG of adult rats revealed labeled phox2b-expressing neurons within the RTN. Our findings are supported by mathematical modeling of chemosensitive and late-E populations within the RTN and pFRG regions as two separate but interacting populations in a way that the activation of the pFRG late-E neurons during hypercapnia require glutamatergic inputs from the RTN neurons that intrinsically detect changes in CO/pH.
延髓尾侧背核 (RTN) 含有对 CO 敏感的细胞,这些细胞向呼吸网络提供 CO 依赖性兴奋性驱动。这种驱动促进了呼吸中枢模式发生器 (rCPG) 的功能,并增加了交感神经活动。有证据表明,在高碳酸血症期间,副基底呼吸群 (pFRG) 中的晚期呼气 (late-E) 振荡器被激活,并决定了主动呼气的出现。然而,在高 CO 条件下,负责将兴奋性信号分布到 pFRG 和 rCPG 的微电路仍不清楚。在此,我们假设 RTN 中的化学敏感神经元的兴奋性输入对于 pFRG 中晚期 E 神经元的激活是必要的。使用去大脑原位大鼠制备物,我们发现用神经激肽-1 受体表达神经元的 RTN 区的 substance P-saporin 缀合物进行神经损伤,抑制了腹部神经 (AbN) 和交感神经 (SN) 中的晚期 E 活动,并减弱了由高碳酸血症引起的膈神经 (PN) 活动的增加。另一方面,在 pFRG 中注射犬尿氨酸 (100 mM) 消除了 AbN 和胸 SN 中的晚期 E 活动,但在高碳酸血症期间不改变 PN 反应。向成年大鼠的 pFRG 中进行逆行示踪剂注射显示,在 RTN 内有标记的 phox2b 表达神经元。我们的发现得到了 RTN 和 pFRG 区域内化学敏感和晚期 E 群体的数学模型的支持,这些模型将 RTN 神经元中的兴奋性输入作为两个独立但相互作用的群体,以一种方式进行,即在高碳酸血症期间 pFRG 晚期 E 神经元的激活需要从内在检测 CO/pH 变化的 RTN 神经元中获得谷氨酸能输入。