Olver Neil, Schalekamp Frans, van der Ster Suzanne, Stougie Leen, van Zuylen Anke
Department of Mathematics, London School of Economics and Political Science, London, United Kingdom.
Centrum Wiskunde & Informatica, Amsterdam, Netherlands.
Math Program. 2023;198(1):811-853. doi: 10.1007/s10107-022-01790-y. Epub 2022 Mar 21.
We give a 2-approximation algorithm for the Maximum Agreement Forest problem on two rooted binary trees. This NP-hard problem has been studied extensively in the past two decades, since it can be used to compute the rooted Subtree Prune-and-Regraft (rSPR) distance between two phylogenetic trees. Our algorithm is combinatorial and its running time is quadratic in the input size. To prove the approximation guarantee, we construct a feasible dual solution for a novel exponential-size linear programming formulation. In addition, we show this linear program has a smaller integrality gap than previously known formulations, and we give an equivalent compact formulation, showing that it can be solved in polynomial time.
我们给出了一种针对两个有根二叉树的最大一致森林问题的2近似算法。这个NP难问题在过去二十年中得到了广泛研究,因为它可用于计算两个系统发育树之间的有根子树剪枝与重接(rSPR)距离。我们的算法是组合式的,其运行时间与输入规模成二次关系。为证明近似保证,我们为一个新颖的指数规模线性规划公式构造了一个可行对偶解。此外,我们表明这个线性规划的完整性差距比先前已知的公式更小,并且我们给出了一个等价的紧凑公式,表明它可以在多项式时间内求解。