Suppr超能文献

2型黄斑毛细血管扩张症:一种使用多模态成像的分类系统。MacTel项目报告编号10。

Macular Telangiectasia Type 2: A Classification System Using MultiModal Imaging MacTel Project Report Number 10.

作者信息

Chew Emily Y, Peto Tunde, Clemons Traci E, Sallo Ferenc B, Pauleikhoff Daniel, Leung Irene, Jaffe Glenn J, Heeren Tjebo F C, Egan Catherine A, Charbel Issa Peter, Balaskas Konstantinos, Holz Frank G, Gaudric Alain, Bird Alan C, Friedlander Martin

机构信息

Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland.

Centre for Public Health, Queen's University, Belfast, United Kingdom.

出版信息

Ophthalmol Sci. 2022 Dec 8;3(2):100261. doi: 10.1016/j.xops.2022.100261. eCollection 2023 Jun.

Abstract

PURPOSE

To develop a severity classification for macular telangiectasia type 2 (MacTel) disease using multimodal imaging.

DESIGN

An algorithm was used on data from a prospective natural history study of MacTel for classification development.

SUBJECTS

A total of 1733 participants enrolled in an international natural history study of MacTel.

METHODS

The Classification and Regression Trees (CART), a predictive nonparametric algorithm used in machine learning, analyzed the features of the multimodal imaging important for the development of a classification, including reading center gradings of the following digital images: stereoscopic color and red-free fundus photographs, fluorescein angiographic images, fundus autofluorescence images, and spectral-domain (SD)-OCT images. Regression models that used least square method created a decision tree using features of the ocular images into different categories of disease severity.

MAIN OUTCOME MEASURES

The primary target of interest for the algorithm development by CART was the change in best-corrected visual acuity (BCVA) at baseline for the right and left eyes. These analyses using the algorithm were repeated for the BCVA obtained at the last study visit of the natural history study for the right and left eyes.

RESULTS

The CART analyses demonstrated 3 important features from the multimodal imaging for the classification: OCT hyper-reflectivity, pigment, and ellipsoid zone loss. By combining these 3 features (as absent, present, noncentral involvement, and central involvement of the macula), a 7-step scale was created, ranging from excellent to poor visual acuity. At grade 0, 3 features are not present. At the most severe grade, pigment and exudative neovascularization are present. To further validate the classification, using the Generalized Estimating Equation regression models, analyses for the annual relative risk of progression over a period of 5 years for vision loss and for progression along the scale were performed.

CONCLUSIONS

This analysis using the data from current imaging modalities in participants followed in the MacTel natural history study informed a classification for MacTel disease severity featuring variables from SD-OCT. This classification is designed to provide better communications to other clinicians, researchers, and patients.

FINANCIAL DISCLOSURES

Proprietary or commercial disclosure may be found after the references.

摘要

目的

利用多模态成像技术制定2型黄斑毛细血管扩张症(MacTel)疾病的严重程度分类。

设计

采用一种算法对MacTel前瞻性自然史研究的数据进行分类开发。

研究对象

共有1733名参与者纳入MacTel的国际自然史研究。

方法

分类与回归树(CART)是机器学习中使用的一种预测性非参数算法,分析了对分类开发重要的多模态成像特征,包括以下数字图像的阅片中心分级:立体彩色和无赤眼底照片、荧光素血管造影图像、眼底自发荧光图像和谱域(SD)-OCT图像。使用最小二乘法的回归模型利用眼部图像特征创建了一个决策树,将疾病严重程度分为不同类别。

主要观察指标

CART算法开发的主要关注目标是基线时右眼和左眼最佳矫正视力(BCVA)的变化。对自然史研究最后一次随访时右眼和左眼获得的BCVA重复使用该算法进行这些分析。

结果

CART分析显示多模态成像中有3个重要特征可用于分类:OCT高反射性、色素沉着和椭圆体带缺失。通过结合这3个特征(即黄斑是否存在、是否存在、是否为非中心受累以及是否为中心受累),创建了一个7级量表,视力从优到差。0级时,3个特征均不存在。在最严重级别时,存在色素沉着和渗出性新生血管。为进一步验证该分类,使用广义估计方程回归模型,对5年内视力丧失的年度相对进展风险以及沿该量表的进展情况进行了分析。

结论

利用MacTel自然史研究中参与者当前成像模式的数据进行的这项分析,得出了一种以SD-OCT变量为特征的MacTel疾病严重程度分类。该分类旨在更好地与其他临床医生、研究人员和患者进行沟通。

财务披露

专有或商业披露信息可在参考文献之后找到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eddc/9944556/c5f3df1cc583/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验