Suppr超能文献

基于深度学习的 2 型黄斑毛细血管扩张症光学相干断层扫描图像中视网膜空洞的分类和分割。

Deep learning-based classification and segmentation of retinal cavitations on optical coherence tomography images of macular telangiectasia type 2.

机构信息

Biomedical Engineering, Duke University, Durham, North Carolina, USA

Ophthalmology, Duke Medicine, Durham, North Carolina, USA.

出版信息

Br J Ophthalmol. 2022 Mar;106(3):396-402. doi: 10.1136/bjophthalmol-2020-317131. Epub 2020 Nov 23.

Abstract

AIM

To develop a fully automatic algorithm to segment retinal cavitations on optical coherence tomography (OCT) images of macular telangiectasia type 2 (MacTel2).

METHODS

The dataset consisted of 99 eyes from 67 participants enrolled in an international, multicentre, phase 2 MacTel2 clinical trial (NCT01949324). Each eye was imaged with spectral-domain OCT at three time points over 2 years. Retinal cavitations were manually segmented by a trained Reader and the retinal cavitation volume was calculated. Two convolutional neural networks (CNNs) were developed that operated in sequential stages. In the first stage, CNN1 classified whether a B-scan contained any retinal cavitations. In the second stage, CNN2 segmented the retinal cavitations in a B-scan. We evaluated the performance of the proposed method against alternative methods using several performance metrics and manual segmentations as the gold standard.

RESULTS

The proposed method was computationally efficient and accurately classified and segmented retinal cavitations on OCT images, with a sensitivity of 0.94, specificity of 0.80 and average Dice similarity coefficient of 0.94±0.07 across all time points. The proposed method produced measurements that were highly correlated with the manual measurements of retinal cavitation volume and change in retinal cavitation volume over time.

CONCLUSION

The proposed method will be useful to help clinicians quantify retinal cavitations, assess changes over time and further investigate the clinical significance of these early structural changes observed in MacTel2.

摘要

目的

开发一种全自动算法,用于分割 2 型黄斑毛细血管扩张症(MacTel2)的光学相干断层扫描(OCT)图像中的视网膜空洞。

方法

该数据集由 67 名参与者的 99 只眼组成,这些参与者参与了一项国际多中心 2 期 MacTel2 临床试验(NCT01949324)。每只眼在 2 年内的 3 个时间点用谱域 OCT 成像。视网膜空洞由经过培训的读者手动分割,并计算视网膜空洞体积。开发了两个连续阶段工作的卷积神经网络(CNN)。在第一阶段,CNN1 分类 B 扫描是否包含任何视网膜空洞。在第二阶段,CNN2 在 B 扫描中分割视网膜空洞。我们使用多种性能指标和手动分割作为金标准,评估了所提出的方法与替代方法的性能。

结果

所提出的方法计算效率高,能够准确地对 OCT 图像中的视网膜空洞进行分类和分割,在所有时间点的敏感性为 0.94,特异性为 0.80,平均 Dice 相似系数为 0.94±0.07。所提出的方法产生的测量值与手动测量的视网膜空洞体积和随时间变化的视网膜空洞体积高度相关。

结论

所提出的方法将有助于临床医生量化视网膜空洞,评估随时间的变化,并进一步研究 MacTel2 中观察到的这些早期结构变化的临床意义。

相似文献

7
Fully automated detection of retinal disorders by image-based deep learning.基于图像的深度学习技术对视网膜疾病进行全自动检测。
Graefes Arch Clin Exp Ophthalmol. 2019 Mar;257(3):495-505. doi: 10.1007/s00417-018-04224-8. Epub 2019 Jan 4.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验