Suppr超能文献

使用INLA对纵向半连续生物标志物和终末事件的两部分联合模型进行贝叶斯估计:对癌症临床试验评估的意义

Bayesian estimation of two-part joint models for a longitudinal semicontinuous biomarker and a terminal event with INLA: Interests for cancer clinical trial evaluation.

作者信息

Rustand Denis, van Niekerk Janet, Rue Håvard, Tournigand Christophe, Rondeau Virginie, Briollais Laurent

机构信息

Biostatistic Team, Bordeaux Population Health Center, ISPED, Centre INSERM U1219, Bordeaux, France.

Statistics Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.

出版信息

Biom J. 2023 Apr;65(4):e2100322. doi: 10.1002/bimj.202100322. Epub 2023 Feb 27.

Abstract

Two-part joint models for a longitudinal semicontinuous biomarker and a terminal event have been recently introduced based on frequentist estimation. The biomarker distribution is decomposed into a probability of positive value and the expected value among positive values. Shared random effects can represent the association structure between the biomarker and the terminal event. The computational burden increases compared to standard joint models with a single regression model for the biomarker. In this context, the frequentist estimation implemented in the R package frailtypack can be challenging for complex models (i.e., a large number of parameters and dimension of the random effects). As an alternative, we propose a Bayesian estimation of two-part joint models based on the Integrated Nested Laplace Approximation (INLA) algorithm to alleviate the computational burden and fit more complex models. Our simulation studies confirm that INLA provides accurate approximation of posterior estimates and to reduced computation time and variability of estimates compared to frailtypack in the situations considered. We contrast the Bayesian and frequentist approaches in the analysis of two randomized cancer clinical trials (GERCOR and PRIME studies), where INLA has a reduced variability for the association between the biomarker and the risk of event. Moreover, the Bayesian approach was able to characterize subgroups of patients associated with different responses to treatment in the PRIME study. Our study suggests that the Bayesian approach using the INLA algorithm enables to fit complex joint models that might be of interest in a wide range of clinical applications.

摘要

最近基于频率主义估计引入了用于纵向半连续生物标志物和终末事件的两部分联合模型。生物标志物分布被分解为正值的概率和正值中的期望值。共享随机效应可以表示生物标志物和终末事件之间的关联结构。与具有单一生物标志物回归模型的标准联合模型相比,计算负担增加。在这种情况下,R包frailtypack中实现的频率主义估计对于复杂模型(即大量参数和随机效应的维度)可能具有挑战性。作为一种替代方法,我们提出基于集成嵌套拉普拉斯近似(INLA)算法对两部分联合模型进行贝叶斯估计,以减轻计算负担并拟合更复杂的模型。我们的模拟研究证实,在考虑的情况下,与frailtypack相比,INLA提供了后验估计的准确近似,并减少了估计的计算时间和变异性。我们在两项随机癌症临床试验(GERCOR和PRIME研究)的分析中对比了贝叶斯方法和频率主义方法,其中INLA在生物标志物与事件风险之间的关联方面具有较小的变异性。此外,贝叶斯方法能够在PRIME研究中表征与不同治疗反应相关的患者亚组。我们的研究表明,使用INLA算法的贝叶斯方法能够拟合在广泛临床应用中可能感兴趣的复杂联合模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验