Suppr超能文献

将开源 saemix 包中的代码扩展以适应纵向和生存时间数据的联合模型。

Extending the code in the open-source saemix package to fit joint models of longitudinal and time-to-event data.

机构信息

Université Paris Cité, INSERM, IAME, F-75018 Paris, France.

Université Paris Cité, INSERM, IAME, F-75018 Paris, France; Department of Epidemiology, Biostatistics and Clinical Research, AP-HP, Bichat-Claude Bernard University Hospital, F-75018 Paris, France.

出版信息

Comput Methods Programs Biomed. 2024 Apr;247:108095. doi: 10.1016/j.cmpb.2024.108095. Epub 2024 Feb 23.

Abstract

BACKGROUND AND OBJECTIVE

Joint modeling of longitudinal and time-to-event data has gained attention over recent years with extensive developments including nonlinear models for longitudinal outcomes and flexible time-to-event models for survival outcomes, possibly involving competing risks. However, in popular software such as R, the function used to describe the biomarker dynamic is mainly linear in the parameters, and the survival submodel relies on pre-implemented functions (exponential, Weibull, ...). The objective of this work is to extend the code from the saemix package (version 3.1 on CRAN) to fit parametric joint models where longitudinal submodels are not necessary linear in their parameters, with full user control over the model function.

METHODS

We used the saemix package, designed to fit nonlinear mixed-effects models (NLMEM) through the Stochastic Approximation Expectation Maximization (SAEM) algorithm, and extended the main functions to joint model estimation. To compute standard errors (SE) of parameter estimates, we implemented a recently developed stochastic algorithm. A simulation study was proposed to assess (i) the performances of parameter estimation, (ii) the SE computation and (iii) the type I error when testing independence between the two submodels. Four joint models were considered in the simulation study, combining a linear or nonlinear mixed-effects model for the longitudinal submodel, with a single terminal event or a competing risk model.

RESULTS

For all simulation scenarios, parameters were precisely and accurately estimated with low bias and uncertainty. For complex joint models (with NLMEM), increasing the number of chains of the algorithm was necessary to reduce bias, but earlier censoring in the competing risk scenario still challenged the estimation. The empirical SE of parameters obtained over all simulations were very close to those computed with the stochastic algorithm. For more complex joint models (involving NLMEM), some estimates of random effects variances had higher uncertainty and their SE were moderately under-estimated. Finally, type I error was controlled for each joint model.

CONCLUSIONS

saemix is a flexible open-source package and we adapted it to fit complex parametric joint models that may not be estimated using standard tools. Code and examples to help users get started are freely available on Github.

摘要

背景与目的

近年来,纵向数据和生存数据的联合建模受到了广泛关注,包括对纵向结局的非线性模型和对生存结局的灵活生存模型(可能涉及竞争风险)的广泛发展。然而,在 R 等流行软件中,用于描述生物标志物动态的函数主要在参数上是线性的,而生存子模型依赖于预先实现的函数(指数、Weibull 等)。本工作的目的是扩展 saemix 包(CRAN 上的版本 3.1)中的代码,以拟合纵向子模型不一定在参数上呈线性的参数联合模型,并允许用户完全控制模型函数。

方法

我们使用了 saemix 包,该包旨在通过随机逼近期望最大化(SAEM)算法拟合非线性混合效应模型(NLMEM),并扩展了主要功能以进行联合模型估计。为了计算参数估计的标准误差(SE),我们实现了一种最近开发的随机算法。提出了一项模拟研究,以评估(i)参数估计的性能,(ii)SE 的计算和(iii)当测试两个子模型之间的独立性时的Ⅰ型错误。模拟研究中考虑了四种联合模型,将纵向子模型的线性或非线性混合效应模型与单个终末事件或竞争风险模型相结合。

结果

对于所有模拟情况,参数的估计都是精确和准确的,具有低偏差和不确定性。对于复杂的联合模型(包含 NLMEM),需要增加算法的链数来减少偏差,但在竞争风险情况下更早的截尾仍然对估计构成挑战。通过所有模拟获得的参数的经验 SE 非常接近通过随机算法计算的 SE。对于更复杂的联合模型(涉及 NLMEM),一些随机效应方差的估计具有更高的不确定性,并且它们的 SE 被适度低估。最后,控制了每种联合模型的Ⅰ型错误。

结论

saemix 是一个灵活的开源软件包,我们对其进行了调整,以拟合可能无法使用标准工具进行估计的复杂参数联合模型。在 Github 上免费提供了帮助用户入门的代码和示例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验