RNA Biosciences Initiative, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, United States.
Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, United States.
Physiol Genomics. 2023 Apr 1;55(4):155-167. doi: 10.1152/physiolgenomics.00162.2022. Epub 2023 Feb 27.
Hibernation is a natural model of extreme physiology in a mammal. Throughout winter, small hibernators repeatedly undergo rapid, dramatic swings in body temperature, perfusion, and oxygen delivery. To gain insight into the molecular mechanisms that support homeostasis despite the numerous challenges posed by this dynamic physiology, we collected 13-lined ground squirrel adrenal glands from at least five individuals representing six key timepoints across the year using body temperature telemetry. Differentially expressed genes were identified using RNA-seq, revealing both strong seasonal and torpor-arousal cycle effects on gene expression. Two novel findings emerge from this study. First, transcripts encoding multiple genes involved in steroidogenesis decreased seasonally. Taken together with morphometric analyses, the data are consistent with preservation of mineralocorticoids but suppression of glucocorticoid and androgen output throughout winter hibernation. Second, a temporally orchestrated, serial gene expression program unfolds across the brief arousal periods. This program initiates during early rewarming with the transient activation of a set of immediate early response (IER) genes, comprised of both transcription factors and the RNA degradation proteins that assure their rapid turnover. This pulse in turn activates a cellular stress response program to restore proteostasis comprised of protein turnover, synthesis, and folding machinery. These and other data support a general model for gene expression across the torpor-arousal cycle that is facilitated in synchrony with whole body temperature shifts; induction of the immediate early response upon rewarming activates a proteostasis program followed by a restored tissue-specific gene expression profile enabling renewal, repair, and survival of the torpid state. This pioneer study of adrenal gland gene expression dynamics in hibernating ground squirrels leverages the power of RNA-seq on multiple precisely timed samples to demonstrate: ) steroidogenesis is seasonally reorganized to preserve aldosterone at the expense of glucocorticoids and androgens throughout winter hibernation; ) a serial gene expression program unfolds during each short arousal whereby immediate early response genes induce the gene expression machinery that restores proteostasis and the cell-specific expression profile before torpor reentry.
冬眠是哺乳动物极端生理学的自然模型。在整个冬季,小型冬眠动物的体温、灌注和氧气输送会反复经历快速、剧烈的波动。为了深入了解尽管这种动态生理学带来了许多挑战,但仍能维持体内平衡的分子机制,我们使用体温遥测技术,从至少五个个体中收集了 13 条纹地松鼠的肾上腺腺体,这些个体代表了全年六个关键时间点。使用 RNA-seq 鉴定差异表达基因,揭示了基因表达的强烈季节性和蛰伏-唤醒周期效应。这项研究有两个新发现。首先,编码多种类固醇生成相关基因的转录本季节性下降。与形态计量学分析相结合,这些数据表明,在整个冬季冬眠期间,盐皮质激素得到了保留,而糖皮质激素和雄激素的产生受到了抑制。其次,一个时间上协调的、连续的基因表达程序在短暂的唤醒期间展开。这个程序在早期复温时开始,伴随着一组即刻早期反应 (IER) 基因的短暂激活,这些基因包括转录因子和 RNA 降解蛋白,它们确保了它们的快速周转。这个脉冲反过来又激活了细胞应激反应程序,以恢复包括蛋白质周转、合成和折叠机制在内的蛋白质稳态。这些和其他数据支持了一个跨越蛰伏-唤醒周期的基因表达的一般模型,该模型与全身温度变化同步进行;复温时立即早期反应的诱导激活了一个蛋白质稳态程序,随后恢复了组织特异性基因表达谱,从而使蛰伏状态得以更新、修复和存活。这项关于冬眠地松鼠肾上腺腺体基因表达动态的开创性研究利用了 RNA-seq 在多个精确定时样本上的强大功能,证明了:) 类固醇生成在冬季冬眠期间被重新组织,以维持醛固酮,而牺牲糖皮质激素和雄激素;) 在每个短暂的唤醒过程中展开一个连续的基因表达程序,其中立即早期反应基因诱导恢复蛋白质稳态和细胞特异性表达谱的基因表达机制,然后再重新进入蛰伏状态。