Division of Solid-State Electronics, Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, SE-751 03 Uppsala, Sweden.
Division of Photonics, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
J Phys Chem Lett. 2023 Mar 9;14(9):2339-2346. doi: 10.1021/acs.jpclett.3c00468. Epub 2023 Feb 27.
Fluorescence-based optical sensing techniques have continually been explored for single-molecule detection targeting myriad biomedical applications. Improving signal-to-noise ratio remains a prioritized effort to enable unambiguous detection at single-molecule level. Here, we report a systematic simulation-assisted optimization of plasmon-enhanced fluorescence of single quantum dots based on nanohole arrays in ultrathin aluminum films. The simulation is first calibrated by referring to the measured transmittance in nanohole arrays and subsequently used for guiding their design. With an optimized combination of nanohole diameter and depth, the variation of the square of simulated average volumetric electric field enhancement agrees excellently with that of experimental photoluminescence enhancement over a large range of nanohole periods. A maximum 5-fold photoluminescence enhancement is statistically achieved experimentally for the single quantum dots immobilized at the bottom of simulation-optimized nanoholes in comparison to those cast-deposited on bare glass substrate. Hence, boosting photoluminescence with optimized nanohole arrays holds promises for single-fluorophore-based biosensing.
基于荧光的光学传感技术一直在被探索用于针对各种生物医学应用的单分子检测。提高信噪比仍然是一项优先工作,以实现单分子水平的明确检测。在这里,我们报告了一种基于超薄铝膜中的纳米孔阵列的等离子体增强单量子点荧光的系统模拟辅助优化。该模拟首先通过参考纳米孔阵列中的测量透射率进行校准,然后用于指导其设计。通过优化纳米孔直径和深度的组合,模拟平均体电场增强的平方的变化与实验中光致发光增强的变化在很大的纳米孔周期范围内非常吻合。与那些沉积在裸玻璃基底上的量子点相比,实验上在模拟优化的纳米孔底部固定的单个量子点的光致发光增强最大可达 5 倍,这是通过统计实现的。因此,使用优化的纳米孔阵列增强光致发光有望用于基于单荧光团的生物传感。