Suppr超能文献

用于生物传感器应用的等离激元纳米孔阵列上纳米级生物分子的介电泳捕获:简易制备与可见光区域检测

Dielectrophoretic trapping of nanosized biomolecules on plasmonic nanohole arrays for biosensor applications: simple fabrication and visible-region detection.

作者信息

Fujiwara Satoko, Hata Misaki, Onohara Ikumi, Kawasaki Daiki, Sueyoshi Kenji, Hisamoto Hideaki, Suzuki Masato, Yasukawa Tomoyuki, Endo Tatsuro

机构信息

Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University 1-1 Gakuen-cho, Naka-ku, Sakai Osaka 599-8531 Japan

Graduate School of Material Science, University of Hyogo 3-2-1 Kouto, Kamigori Ako Hyogo 678-1297 Japan.

出版信息

RSC Adv. 2023 Jul 12;13(31):21118-21126. doi: 10.1039/d3ra03245k.

Abstract

Surface plasmon resonance is an optical phenomenon that can be applied for label-free, real-time sensing to directly measure biomolecular interactions and detect biomarkers in solutions. Previous studies using plasmonic nanohole arrays have monitored and detected various biomolecules owing to the propagating surface plasmon polaritons (SPPs). Extraordinary optical transmission (EOT) that occurs in the near-infrared (NIR) and infrared (IR) regions is usually used for detection. Although these plasmonic nanohole arrays improve the sensitivity and throughput for biomolecular detection, these arrays have the following disadvantages: (1) molecular diffusion in the solution (making the detection of biomolecules difficult), (2) the device fabrication's complexities, and (3) expensive equipments for detection in the NIR or IR regions. Therefore, there is a need to fabricate plasmonic nanohole arrays as biomolecular detection platforms using a simple and highly reproducible procedure based on other SPP modes in the visible region instead of the EOT in the NIR or IR regions while suppressing molecular diffusion in the solution. In this paper, we propose the combination of a polymer-based gold nanohole array (Au NHA) obtained through an easy process as a simple platform and dielectrophoresis (DEP) as a biomolecule manipulation method. This approach was experimentally demonstrated using SPP and LSPR modes (not EOT) in the visible region and simple, label-free, rapid, cost-effective trapping and enrichment of nanoparticles (trapping time: <50 s) and bovine serum albumin (trapping time: <1000 s) was realized. These results prove that the Au NHA-based DEP devices have great potential for real-time digital and Raman bioimaging, in addition to biomarker detection.

摘要

表面等离子体共振是一种光学现象,可用于无标记实时传感,以直接测量生物分子相互作用并检测溶液中的生物标志物。先前使用等离子体纳米孔阵列的研究由于传播表面等离子体激元(SPP)而监测和检测了各种生物分子。近红外(NIR)和红外(IR)区域中出现的超常光学传输(EOT)通常用于检测。尽管这些等离子体纳米孔阵列提高了生物分子检测的灵敏度和通量,但这些阵列存在以下缺点:(1)溶液中的分子扩散(使生物分子检测困难),(2)器件制造的复杂性,以及(3)用于近红外或红外区域检测的昂贵设备。因此,需要基于可见光区域中的其他SPP模式,而不是近红外或红外区域中的EOT,使用简单且高度可重复的程序来制造作为生物分子检测平台的等离子体纳米孔阵列,同时抑制溶液中的分子扩散。在本文中,我们提出将通过简便工艺获得的基于聚合物的金纳米孔阵列(Au NHA)作为一个简单平台与介电电泳(DEP)作为生物分子操纵方法相结合。该方法在可见光区域使用SPP和LSPR模式(而非EOT)进行了实验验证,并实现了对纳米颗粒(捕获时间:<50秒)和牛血清白蛋白(捕获时间:<1000秒)的简单、无标记、快速且经济高效的捕获和富集。这些结果证明,基于Au NHA的DEP器件除了用于生物标志物检测外,在实时数字和拉曼生物成像方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/814b/10337744/bf5ea28b5b3b/d3ra03245k-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验