Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Graduate School of Systemic Neuroscience, Ludwig Maximilian University, Planneg-Martinsried, Germany.
Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
Neuroimage. 2023 Apr 15;270:119981. doi: 10.1016/j.neuroimage.2023.119981. Epub 2023 Feb 26.
Neural oscillations in distinct frequency bands are ubiquitous in the brain and play a role in many cognitive processes. The "communication by coherence" hypothesis, poses that the synchronization through phase coupling of frequency-specific neural oscillations regulate information flow across distribute brain regions. Specifically, the posterior alpha frequency band (7-12 Hz) is thought to gate bottom-up visual information flow by inhibition during visual processing. Evidence shows that increased alpha phase coherency positively correlates with functional connectivity in resting state connectivity networks, supporting alpha mediates neural communication through coherency. However, these findings have mainly been derived from spontaneous changes in the ongoing alpha rhythm. In this study, we experimentally modulate the alpha rhythm by targeting individuals' intrinsic alpha frequency with sustained rhythmic light to investigate alpha-mediated synchronous cortical activity in both EEG and fMRI. We hypothesize increased alpha coherency and fMRI connectivity should arise from modulation of the intrinsic alpha frequency (IAF) as opposed to control frequencies in the alpha range. Sustained rhythmic and arrhythmic stimulation at the IAF and at neighboring frequencies within the alpha band range (7-12 Hz) was implemented and assessed in a separate EEG and fMRI study. We observed increased cortical alpha phase coherency in the visual cortex during rhythmic stimulation at the IAF as in comparison to rhythmic stimulation of control frequencies. In the fMRI, we found increased functional connectivity for stimulation at the IAF in visual and parietal areas as compared to other rhythmic control frequencies by correlating time courses from a set of regions of interest for the different stimulation conditions and applying network-based statistics. This suggests that rhythmic stimulation at the IAF frequency induces a higher degree of synchronicity of neural activity across the occipital and parietal cortex, which supports the role of the alpha oscillation in gating information flow during visual processing.
大脑中普遍存在不同频段的神经振荡,它们在许多认知过程中发挥作用。“相干通讯”假说认为,通过特定频率的神经振荡的相位耦合同步,调节跨分布式大脑区域的信息流。具体来说,后 alpha 频段(7-12 Hz)被认为通过在视觉处理过程中抑制来控制自上而下的视觉信息流。有证据表明,增加的 alpha 相位相干性与静息状态连接网络中的功能连接呈正相关,支持 alpha 通过相干性介导神经通讯。然而,这些发现主要来自于自发变化的持续 alpha 节律。在这项研究中,我们通过针对个体的固有 alpha 频率,使用持续的有节奏的光来实验性地调制 alpha 节律,以研究 EEG 和 fMRI 中 alpha 介导的同步皮质活动。我们假设,增加的 alpha 相干性和 fMRI 连接性应该源于内在 alpha 频率(IAF)的调制,而不是 alpha 范围内的控制频率。在单独的 EEG 和 fMRI 研究中,实施并评估了在 IAF 及其在 alpha 频段范围内(7-12 Hz)的相邻频率处的持续有节奏和无节奏刺激。我们观察到,在 IAF 处的有节奏刺激期间,视觉皮层中的皮质 alpha 相位相干性增加,与对照频率的有节奏刺激相比。在 fMRI 中,我们发现与其他有节奏的对照频率相比,在 IAF 处刺激时,视觉和顶叶区域的功能连接性增加,通过对不同刺激条件下的一组感兴趣区域的时间序列进行相关,并应用基于网络的统计方法。这表明,在 IAF 频率处的有节奏刺激诱导了枕叶和顶叶皮质中神经活动的更高同步性,这支持了 alpha 振荡在视觉处理过程中控制信息流的作用。