Suppr超能文献

个体阿尔法峰值频率可预测10赫兹闪烁对选择性注意的影响。

Individual Alpha Peak Frequency Predicts 10 Hz Flicker Effects on Selective Attention.

作者信息

Gulbinaite Rasa, van Viegen Tara, Wieling Martijn, Cohen Michael X, VanRullen Rufin

机构信息

Centre National de la Recherche Scientifique, Faculté de Médecine Purpan, Toulouse 31000, France,

Université de Toulouse, Centre de Recherche Cerveau et Cognition, Université Paul Sabatier, Toulouse 31052, France.

出版信息

J Neurosci. 2017 Oct 18;37(42):10173-10184. doi: 10.1523/JNEUROSCI.1163-17.2017. Epub 2017 Sep 20.

Abstract

Rhythmic visual stimulation ("flicker") is primarily used to "tag" processing of low-level visual and high-level cognitive phenomena. However, preliminary evidence suggests that flicker may also entrain endogenous brain oscillations, thereby modulating cognitive processes supported by those brain rhythms. Here we tested the interaction between 10 Hz flicker and endogenous alpha-band (∼10 Hz) oscillations during a selective visuospatial attention task. We recorded EEG from human participants (both genders) while they performed a modified Eriksen flanker task in which distractors and targets flickered within (10 Hz) or outside (7.5 or 15 Hz) the alpha band. By using a combination of EEG source separation, time-frequency, and single-trial linear mixed-effects modeling, we demonstrate that 10 Hz flicker interfered with stimulus processing more on incongruent than congruent trials (high vs low selective attention demands). Crucially, the effect of 10 Hz flicker on task performance was predicted by the distance between 10 Hz and individual alpha peak frequency (estimated during the task). Finally, the flicker effect on task performance was more strongly predicted by EEG flicker responses during stimulus processing than during preparation for the upcoming stimulus, suggesting that 10 Hz flicker interfered more with reactive than proactive selective attention. These findings are consistent with our hypothesis that visual flicker entrained endogenous alpha-band networks, which in turn impaired task performance. Our findings also provide novel evidence for frequency-dependent exogenous modulation of cognition that is determined by the correspondence between the exogenous flicker frequency and the endogenous brain rhythms. Here we provide novel evidence that the interaction between exogenous rhythmic visual stimulation and endogenous brain rhythms can have frequency-specific behavioral effects. We show that alpha-band (10 Hz) flicker impairs stimulus processing in a selective attention task when the stimulus flicker rate matches individual alpha peak frequency. The effect of sensory flicker on task performance was stronger when selective attention demands were high, and was stronger during stimulus processing and response selection compared with the prestimulus anticipatory period. These findings provide novel evidence that frequency-specific sensory flicker affects online attentional processing, and also demonstrate that the correspondence between exogenous and endogenous rhythms is an overlooked prerequisite when testing for frequency-specific cognitive effects of flicker.

摘要

节律性视觉刺激(“闪烁”)主要用于“标记”低层次视觉和高层次认知现象的处理过程。然而,初步证据表明,闪烁也可能夹带内源性脑振荡,从而调节由这些脑节律支持的认知过程。在此,我们在一项选择性视觉空间注意任务中测试了10赫兹闪烁与内源性阿尔法波段(约10赫兹)振荡之间的相互作用。我们记录了人类参与者(男女皆有)在执行一项改良的埃里克森侧翼任务时的脑电图,在该任务中,干扰物和目标在阿尔法波段内(10赫兹)或外(7.5或15赫兹)闪烁。通过结合脑电图源分离、时频分析和单试次线性混合效应建模,我们证明,在不一致试验(高选择性注意需求与低选择性注意需求)中,10赫兹闪烁对刺激处理的干扰比对一致试验更大。至关重要的是,10赫兹闪烁对任务表现的影响可由10赫兹与个体阿尔法峰值频率之间的距离(在任务期间估计)预测。最后,与即将到来的刺激准备期相比,刺激处理期间的脑电图闪烁反应对任务表现的闪烁效应预测更强,这表明10赫兹闪烁对反应性选择性注意的干扰比对主动性选择性注意更大。这些发现与我们的假设一致,即视觉闪烁夹带内源性阿尔法波段网络,进而损害任务表现。我们的发现还为认知的频率依赖性外源性调节提供了新证据,这种调节由外源性闪烁频率与内源性脑节律之间的对应关系决定。在此,我们提供了新证据,表明外源性节律性视觉刺激与内源性脑节律之间的相互作用可产生频率特异性行为效应。我们表明,当刺激闪烁率与个体阿尔法峰值频率匹配时,阿尔法波段(10赫兹)闪烁会损害选择性注意任务中的刺激处理。当选择性注意需求较高时,感觉闪烁对任务表现的影响更强,并且与刺激前预期期相比,在刺激处理和反应选择期间更强。这些发现为频率特异性感觉闪烁影响在线注意力处理提供了新证据,也表明在测试闪烁的频率特异性认知效应时,外源性和内源性节律之间的对应关系是一个被忽视的前提条件。

相似文献

1
Individual Alpha Peak Frequency Predicts 10 Hz Flicker Effects on Selective Attention.
J Neurosci. 2017 Oct 18;37(42):10173-10184. doi: 10.1523/JNEUROSCI.1163-17.2017. Epub 2017 Sep 20.
2
Stimulus-Driven Brain Rhythms within the Alpha Band: The Attentional-Modulation Conundrum.
J Neurosci. 2019 Apr 17;39(16):3119-3129. doi: 10.1523/JNEUROSCI.1633-18.2019. Epub 2019 Feb 15.
3
No Evidence for Entrainment: Endogenous Gamma Oscillations and Rhythmic Flicker Responses Coexist in Visual Cortex.
J Neurosci. 2021 Aug 4;41(31):6684-6698. doi: 10.1523/JNEUROSCI.3134-20.2021. Epub 2021 Jul 6.
4
Competitive effects on steady-state visual evoked potentials with frequencies in- and outside the α band.
Exp Brain Res. 2010 Sep;205(4):489-95. doi: 10.1007/s00221-010-2384-2. Epub 2010 Aug 14.
6
Attention differentially modulates the amplitude of resonance frequencies in the visual cortex.
Neuroimage. 2019 Dec;203:116146. doi: 10.1016/j.neuroimage.2019.116146. Epub 2019 Sep 4.
7
Alpha Frequency Entrainment Reduces the Effect of Visual Distractors.
J Cogn Neurosci. 2019 Sep;31(9):1392-1403. doi: 10.1162/jocn_a_01422. Epub 2019 May 6.
8
The Role of Oscillatory Phase in Determining the Temporal Organization of Perception: Evidence from Sensory Entrainment.
J Neurosci. 2017 Nov 1;37(44):10636-10644. doi: 10.1523/JNEUROSCI.1704-17.2017. Epub 2017 Oct 2.
9
Alpha-band rhythms in visual task performance: phase-locking by rhythmic sensory stimulation.
PLoS One. 2013;8(3):e60035. doi: 10.1371/journal.pone.0060035. Epub 2013 Mar 29.
10
Evaluating the feasibility of the steady-state visual evoked potential (SSVEP) to study temporal attention.
Psychophysiology. 2018 May;55(5):e13029. doi: 10.1111/psyp.13029. Epub 2017 Nov 9.

引用本文的文献

1
Frequency tagging of spatial attention using periliminal flickers.
Imaging Neurosci (Camb). 2024 Jul 12;2. doi: 10.1162/imag_a_00223. eCollection 2024.
3
FREQ-NESS Reveals the Dynamic Reconfiguration of Frequency-Resolved Brain Networks During Auditory Stimulation.
Adv Sci (Weinh). 2025 May;12(20):e2413195. doi: 10.1002/advs.202413195. Epub 2025 Apr 10.
4
Thalamocortical interactions reflecting the intensity of flicker light-induced visual hallucinatory phenomena.
Netw Neurosci. 2025 Mar 3;9(1):1-17. doi: 10.1162/netn_a_00417. eCollection 2025.
6
Spectral tuning and after-effects in neural entrainment.
Behav Brain Funct. 2024 Nov 21;20(1):29. doi: 10.1186/s12993-024-00259-6.
7
Sensory stimulation enhances visual working memory capacity.
Commun Psychol. 2024 Nov 18;2(1):109. doi: 10.1038/s44271-024-00158-6.
8
Long-range and cross-frequency neural modulation of gamma flicker on vigilance decrement.
Cogn Neurodyn. 2024 Apr;18(2):417-429. doi: 10.1007/s11571-023-10008-6. Epub 2023 Oct 4.

本文引用的文献

1
The Triple-Flash Illusion Reveals a Driving Role of Alpha-Band Reverberations in Visual Perception.
J Neurosci. 2017 Jul 26;37(30):7219-7230. doi: 10.1523/JNEUROSCI.3929-16.2017. Epub 2017 Jun 29.
2
Spatiotemporal oscillatory dynamics of visual selective attention during a flanker task.
Neuroimage. 2017 Aug 1;156:277-285. doi: 10.1016/j.neuroimage.2017.05.014. Epub 2017 May 10.
3
Alpha, beta: The rhythm of the attentional blink.
Psychon Bull Rev. 2017 Dec;24(6):1862-1869. doi: 10.3758/s13423-017-1257-0.
4
Power and Phase of Alpha Oscillations Reveal an Interaction between Spatial and Temporal Visual Attention.
J Cogn Neurosci. 2017 Mar;29(3):480-494. doi: 10.1162/jocn_a_01058. Epub 2016 Oct 19.
5
Nonlinear Origin of SSVEP Spectra-A Combined Experimental and Modeling Study.
Front Comput Neurosci. 2016 Dec 27;10:129. doi: 10.3389/fncom.2016.00129. eCollection 2016.
6
Comparison of linear spatial filters for identifying oscillatory activity in multichannel data.
J Neurosci Methods. 2017 Feb 15;278:1-12. doi: 10.1016/j.jneumeth.2016.12.016. Epub 2016 Dec 27.
7
Rhythmic entrainment source separation: Optimizing analyses of neural responses to rhythmic sensory stimulation.
Neuroimage. 2017 Feb 15;147:43-56. doi: 10.1016/j.neuroimage.2016.11.036. Epub 2016 Dec 1.
8
Visual cortex responses reflect temporal structure of continuous quasi-rhythmic sensory stimulation.
Neuroimage. 2017 Feb 1;146:58-70. doi: 10.1016/j.neuroimage.2016.11.043. Epub 2016 Nov 17.
9
The Role of Alpha Activity in Spatial and Feature-Based Attention.
eNeuro. 2016 Oct 5;3(5). doi: 10.1523/ENEURO.0204-16.2016. eCollection 2016 Sep-Oct.
10
Brain Networks and α-Oscillations: Structural and Functional Foundations of Cognitive Control.
Trends Cogn Sci. 2016 Nov;20(11):805-817. doi: 10.1016/j.tics.2016.09.004. Epub 2016 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验