Suppr超能文献

基于管电流调制的躯干计算机断层扫描中深度学习图像重建的图像质量评估

Image Quality Assessment of Deep Learning Image Reconstruction in Torso Computed Tomography Using Tube Current Modulation.

作者信息

Takeuchi Kazuhiro, Ide Yasuhiro, Mori Yuichiro, Uehara Yusuke, Sukeishi Hiroshi, Goto Sachiko

机构信息

Department of Radiology, Kagawa University Hospital.

Department of Radiological Technology, Graduate School of Health Sciences, Okayama University.

出版信息

Acta Med Okayama. 2023 Feb;77(1):45-55. doi: 10.18926/AMO/64361.

Abstract

Novel deep learning image reconstruction (DLIR) reportedly changes the image quality characteristics based on object contrast and image noise. In clinical practice, computed tomography image noise is usually controlled by tube current modulation (TCM) to accommodate changes in object size. This study aimed to evaluate the image quality characteristics of DLIR for different object sizes when the in-plane noise was controlled by TCM. Images acquisition was performed on a GE Revolution CT system to investigate the impact of the DLIR algorithm compared to the standard reconstructions of filtered-back projection (FBP) and hybrid iterative reconstruction (hybrid-IR). The image quality assessment was performed using phantom images, and an observer study was conducted using clinical cases. The image quality assessment confirmed the excellent noise- reduction performance of DLIR, despite variations due to phantom size. Similarly, in the observer study, DLIR received high evaluations regardless of the body parts imaged. We evaluated a novel DLIR algorithm by replicating clinical behaviors. Consequently, DLIR exhibited higher image quality than those of FBP and hybrid-IR in both phantom and observer studies, albeit the value depended on the reconstruction strength, and proved itself capable of providing stable image quality in clinical use.

摘要

据报道,新型深度学习图像重建(DLIR)可根据物体对比度和图像噪声改变图像质量特征。在临床实践中,计算机断层扫描图像噪声通常通过管电流调制(TCM)来控制,以适应物体大小的变化。本研究旨在评估当平面内噪声通过TCM控制时,不同物体大小的DLIR图像质量特征。在GE Revolution CT系统上进行图像采集,以研究与滤波反投影(FBP)和混合迭代重建(hybrid-IR)的标准重建相比,DLIR算法的影响。使用体模图像进行图像质量评估,并使用临床病例进行观察者研究。图像质量评估证实了DLIR出色的降噪性能,尽管因体模大小而有所变化。同样,在观察者研究中,无论成像的身体部位如何,DLIR都获得了高度评价。我们通过复制临床行为评估了一种新型DLIR算法。因此,在体模和观察者研究中,DLIR均表现出比FBP和hybrid-IR更高的图像质量,尽管该值取决于重建强度,并且证明其自身能够在临床应用中提供稳定的图像质量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验