Suppr超能文献

使用麻疹-腮腺炎-风疹疫苗接种个体的基线免疫状态参数预测特异性抗体和细胞介导的反应。

Prediction of Specific Antibody- and Cell-Mediated Responses Using Baseline Immune Status Parameters of Individuals Received Measles-Mumps-Rubella Vaccine.

机构信息

Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia.

Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, (INM RAS), 119333 Moscow, Russia.

出版信息

Viruses. 2023 Feb 13;15(2):524. doi: 10.3390/v15020524.

Abstract

A successful vaccination implies the induction of effective specific immune responses. We intend to find biomarkers among various immune cell subpopulations, cytokines and antibodies that could be used to predict the levels of specific antibody- and cell-mediated responses after measles-mumps-rubella vaccination. We measured 59 baseline immune status parameters (frequencies of 42 immune cell subsets, levels of 13 cytokines, immunoglobulins) before vaccination and 13 response variables (specific IgA and IgG, antigen-induced IFN-γ production, CD107a expression on CD8+ T lymphocytes, and cellular proliferation levels by CFSE dilution) 6 weeks after vaccination for 19 individuals. Statistically significant Spearman correlations between some baseline parameters and response variables were found for each response variable ( < 0.05). Because of the low number of observations relative to the number of baseline parameters and missing data for some observations, we used three feature selection strategies to select potential predictors of the post-vaccination responses among baseline variables: (a) screening of the variables based on correlation analysis; (b) supervised screening based on the information of changes of baseline variables at day 7; and (c) implicit feature selection using regularization-based sparse regression. We identified optimal multivariate linear regression models for predicting the effectiveness of vaccination against measles-mumps-rubella using the baseline immune status parameters. It turned out that the sufficient number of predictor variables ranges from one to five, depending on the response variable of interest.

摘要

成功的疫苗接种意味着诱导有效的特异性免疫反应。我们旨在从各种免疫细胞亚群、细胞因子和抗体中寻找生物标志物,这些标志物可用于预测麻疹-腮腺炎-风疹疫苗接种后特异性抗体和细胞介导反应的水平。我们在接种前测量了 59 个基线免疫状态参数(42 个免疫细胞亚群的频率、13 种细胞因子的水平、免疫球蛋白),并在接种后 6 周测量了 19 个人的 13 个反应变量(特异性 IgA 和 IgG、抗原诱导的 IFN-γ 产生、CD8+T 淋巴细胞上的 CD107a 表达和 CFSE 稀释后的细胞增殖水平)。对于每个反应变量,都发现了一些基线参数和反应变量之间具有统计学意义的斯皮尔曼相关性(<0.05)。由于相对于基线参数的数量,观察数量较少,并且对于某些观察值存在缺失数据,因此我们使用了三种特征选择策略来选择基线变量中预测接种后反应的潜在预测因子:(a)基于相关性分析筛选变量;(b)基于第 7 天基线变量变化的信息进行有监督筛选;(c)使用基于正则化的稀疏回归进行隐式特征选择。我们使用基线免疫状态参数确定了预测麻疹-腮腺炎-风疹疫苗接种效果的最佳多元线性回归模型。结果表明,取决于感兴趣的反应变量,预测变量的数量从一个到五个不等。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0373/9960117/cf31f5aaca8a/viruses-15-00524-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验