Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China.
Big Data Institute, Central South University, Changsha 410083, China.
Chin Med Sci J. 2023 Mar 31;38(1):38-48. doi: 10.24920/004160.
Electrocardiogram (ECG) is a low-cost, simple, fast, and non-invasive test. It can reflect the heart's electrical activity and provide valuable diagnostic clues about the health of the entire body. Therefore, ECG has been widely used in various biomedical applications such as arrhythmia detection, disease-specific detection, mortality prediction, and biometric recognition. In recent years, ECG-related studies have been carried out using a variety of publicly available datasets, with many differences in the datasets used, data preprocessing methods, targeted challenges, and modeling and analysis techniques. Here we systematically summarize and analyze the ECG-based automatic analysis methods and applications. Specifically, we first reviewed 22 commonly used ECG public datasets and provided an overview of data preprocessing processes. Then we described some of the most widely used applications of ECG signals and analyzed the advanced methods involved in these applications. Finally, we elucidated some of the challenges in ECG analysis and provided suggestions for further research.
心电图(ECG)是一种低成本、简单、快速且非侵入性的检测方法。它可以反映心脏的电活动,并为整个身体的健康状况提供有价值的诊断线索。因此,心电图已广泛应用于各种生物医学应用中,如心律失常检测、特定疾病检测、死亡率预测和生物识别。近年来,人们使用各种公开可用的数据集开展了与心电图相关的研究,这些数据集在使用、数据预处理方法、目标挑战以及建模和分析技术方面存在诸多差异。在这里,我们系统地总结和分析了基于心电图的自动分析方法和应用。具体来说,我们首先回顾了 22 个常用的心电图公共数据集,并提供了数据预处理过程的概述。然后,我们描述了心电图信号的一些最广泛的应用,并分析了这些应用中涉及的先进方法。最后,我们阐明了心电图分析中的一些挑战,并为进一步的研究提供了建议。