在蛋壳膜活性炭上制备用于微波吸收的CoFeO纳米颗粒。

preparation of CoFeO nanoparticles on eggshell membrane-activated carbon for microwave absorption.

作者信息

Soleimani Hassan, Yusuf Jemilat Yetunde, Chuan Lee Kean, Soleimani Hojjatollah, Bin Sabar Mustapha Lutfi, Öchsner Andreas, Abbas Zulkifly, Balogun Asmau Iyabo, Kozlowski Gregory

机构信息

Fundamental and Applied Science Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia.

Department of Physics, North Tehran Branch, Islamic Azad University, 16511- 53311, Tehran, Iran.

出版信息

Heliyon. 2023 Feb 15;9(3):e13256. doi: 10.1016/j.heliyon.2023.e13256. eCollection 2023 Mar.

Abstract

This study explores the potential of using cobalt ferrite (CF) nanoparticles grown in situ on eggshell membranes (ESM) to mitigate the increasing problem of electromagnetic interference (EMI). A simple carbonization process was adopted to synthesize CF nanoparticles on ESM. The study further examines the composites' surface morphology and chemical composition and evaluates their microwave absorption performance (MAP) at X-band frequency. Results showed that the composite of CF and ESM - CESM@CF, exhibited a strong RL peak value of -39.03 mm with an optimal thickness of 1.5 mm. The combination of CF and ESM demonstrates excellent impedance matching and EM wave attenuation. The presence of numerous interfaces, conduction loss from the morphology, interfacial polarisation, and dual influence from both CF and ESM contribute to the high MAP of the composite. CESM@CF composite is projected as an excellent biomass-based nano-composite for EM wave absorption applications.

摘要

本研究探讨了利用原位生长在蛋壳膜(ESM)上的钴铁氧体(CF)纳米颗粒来缓解日益严重的电磁干扰(EMI)问题的潜力。采用简单的碳化工艺在ESM上合成CF纳米颗粒。该研究进一步考察了复合材料的表面形态和化学成分,并评估了它们在X波段频率下的微波吸收性能(MAP)。结果表明,CF与ESM的复合材料——CESM@CF,在1.5毫米的最佳厚度下表现出-39.03毫米的强反射损耗(RL)峰值。CF与ESM的结合展示了优异的阻抗匹配和电磁波衰减。大量界面的存在、形态导致的传导损耗、界面极化以及CF和ESM的双重影响促成了该复合材料的高微波吸收性能。CESM@CF复合材料被认为是一种用于电磁波吸收应用的优异的生物质基纳米复合材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8286/9958450/4093dc92be03/gr1.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索