Suppr超能文献

一种具有可逆多面光致变色化合物的光子人工突触。

A photonic artificial synapse with a reversible multifaceted photochromic compound.

作者信息

Sharma Deeksha, Rao Dheemahi, Saha Bivas

机构信息

Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.

International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.

出版信息

Nanoscale Horiz. 2023 Mar 27;8(4):543-549. doi: 10.1039/d2nh00532h.

Abstract

Modern computational technology based on the von Neumann architecture physically partitions memory and the central processing unit, resulting in fundamental speed limitations and high energy consumption. On the other hand, the human brain is an extraordinary multifunctional organ composed of more than a billion neurons capable of simultaneously thinking, processing, and storing information. Neurons are interconnected with synapses that control information flow from pre-synaptic-to-post-synaptic neurons. Therefore, emulating synaptic functionalities and developing neuromorphic computational architecture has recently attracted much interest. Due to their high-speed, large bandwidth, and no interconnect-related power loss, photonic (all-optical) synapses can overcome the existing hurdles with electronic synapses. Here, we show an artificial photonic synapse by utilizing the well-established reversible, high-contrast photochromic organic compound, spiropyran, stimulated by optical pulses. Optical transmission of spiropyran significantly changes during spiropyran-merocyanine isomerization driven by UV-visible optical pulses. Such changes are equivalent to the biological synapses' inhibitory and excitatory synaptic actions. The slow relaxation to the initial state is considered as synaptic plasticity responsible for learning and memory formation. Short-term memory (STM), long-term memory (LTM), and transition from the STM to the LTM are demonstrated in all-optical synapses by modulating the stimuli's strength. The solvatochromic properties of spiropyran are further utilized to augment memory in synapses. Our work shows that photochromic organic compounds are excellent hosts for artificial photonic synapses and can be implemented in neuromorphic applications.

摘要

基于冯·诺依曼架构的现代计算技术在物理上对内存和中央处理器进行了划分,导致了基本的速度限制和高能耗。另一方面,人类大脑是一个非凡的多功能器官,由超过十亿个神经元组成,能够同时进行思考、处理和存储信息。神经元通过突触相互连接,突触控制着从突触前神经元到突触后神经元的信息流。因此,模拟突触功能并开发神经形态计算架构最近引起了广泛关注。由于其高速、大带宽以及无互连相关的功率损耗,光子(全光)突触可以克服现有电子突触的障碍。在此,我们展示了一种人工光子突触,它利用成熟的可逆、高对比度光致变色有机化合物螺吡喃,由光脉冲激发。在紫外可见光学脉冲驱动的螺吡喃 - 部花青异构化过程中,螺吡喃的光传输发生显著变化。这种变化等同于生物突触的抑制性和兴奋性突触作用。向初始状态的缓慢弛豫被认为是负责学习和记忆形成的突触可塑性。通过调节刺激强度,在全光突触中展示了短期记忆(STM)、长期记忆(LTM)以及从STM到LTM的转变。螺吡喃的溶剂致变色特性进一步被用于增强突触中的记忆。我们的工作表明,光致变色有机化合物是人工光子突触的优良主体,可应用于神经形态应用中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验