Suppr超能文献

大规模、灵活的光突触用于神经形态计算和集成可见光信息传感记忆处理。

Large-Scale and Flexible Optical Synapses for Neuromorphic Computing and Integrated Visible Information Sensing Memory Processing.

机构信息

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

出版信息

ACS Nano. 2021 Jan 26;15(1):1497-1508. doi: 10.1021/acsnano.0c08921. Epub 2020 Dec 29.

Abstract

Optoelectronic synapses integrating synaptic and optical-sensing functions exhibit large advantages in neuromorphic computing for visual information processing and complex learning, recognition, and memory in an energy-efficient way. However, electric stimulation is still essential for existing optoelectronic synapses to realize bidirectional weight-updating, restricting the processing speed, bandwidth, and integration density of the devices. Herein, a two-terminal optical synapse based on a wafer-scale pyrenyl graphdiyne/graphene/PbS quantum dot heterostructure is proposed that can emulate both the excitatory and inhibitory synaptic behaviors in an optical pathway. The simple device architecture and low-dimensional features of the heterostructure endow the optical synapse with robust flexibility for wearable electronics. This optical synapse features a linear and symmetric conductance-update trajectory with numerous conductance states and low noise, which facilitates the demonstration of accurate and effective pattern recognition with a strong fault-tolerant capability even at bending states. A series of logic functions and associative learning capabilities have been demonstrated by the optical synapses in optical pathways, significantly enhancing the information processing capability for neuromorphic computing. Moreover, an integrated visible information sensing memory processing system based on the optical synapse array is constructed to perform real-time detection, image memorization, and distinction tasks. This work is an important step toward the development of optogenetics-inspired neuromorphic computing and adaptive parallel processing networks for wearable electronics.

摘要

光电突触将突触和光传感功能集成在一起,在神经形态计算中具有很大的优势,可实现视觉信息处理以及复杂的学习、识别和记忆功能,同时具有节能的特点。然而,现有的光电突触仍然需要电刺激来实现双向权重更新,这限制了器件的处理速度、带宽和集成密度。在此,提出了一种基于晶圆级苝基石墨炔/石墨烯/PbS 量子点异质结的二端光突触,可在光通路中模拟兴奋性和抑制性突触行为。该异质结的简单器件结构和低维特性为可穿戴电子设备赋予了光突触强大的灵活性。该光突触具有线性和对称的电导更新轨迹,具有众多电导状态和低噪声,即使在弯曲状态下也能实现准确有效的模式识别,并具有很强的容错能力。通过光突触在光通路中展示了一系列逻辑功能和联想学习能力,显著增强了神经形态计算的信息处理能力。此外,还构建了基于光突触阵列的集成可见信息传感记忆处理系统,以执行实时检测、图像存储和区分任务。这项工作是朝着开发受光电启发的神经形态计算和自适应并行处理网络以用于可穿戴电子设备迈出的重要一步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验