Department of Chemical Engineering, Dankook University, Yongin-si, 16890, South Korea.
Phys Chem Chem Phys. 2023 Mar 8;25(10):7496-7507. doi: 10.1039/d2cp05936c.
We perform all-atom molecular dynamics simulations of a 9 nm-thick protein layer, which consists of serum albumin (SA) or a mixture of SA and immunoglobulin gamma-1, formed on 10 nm-sized cationic, anionic, and neutral polystyrene particles. More than half of the proteins are densely concentrated within a distance of ∼3 nm from the particle surface, while fewer proteins are broadly distributed in the range of 3-9 nm from the particle. This compares favorably with the experimental observations of a hard corona as the first layer adjacent to the particle and a soft corona as a loose protein-network. The conformation and diffusivity of the proteins vary in different positions of the layer, and are to an extent dependent on the protein and particle electrostatics. These, combined with free energy calculations, show that the protein and particle charges do not significantly modify the strength of protein-particle binding but do influence the distribution of proteins in the layer. In particular, a free protein more strongly binds to the complex of a protein and particle than to either one, showing the synergistic effect of already adsorbed proteins and a particle. This helps explain the experimental observation regarding the formation of a denser protein layer and the stronger protein-protein interaction in the hard corona than the soft corona.
我们对一个 9nm 厚的蛋白质层进行了全原子分子动力学模拟,该蛋白质层由血清白蛋白(SA)或 SA 和免疫球蛋白 γ-1 的混合物组成,形成于 10nm 大小的阳离子、阴离子和中性聚苯乙烯粒子上。超过一半的蛋白质在距粒子表面约 3nm 的范围内高度集中,而较少的蛋白质在距粒子 3-9nm 的范围内广泛分布。这与实验观察到的硬壳层(紧邻粒子的第一层)和软壳层(松散的蛋白质网络)非常吻合。蛋白质的构象和扩散性在层的不同位置有所不同,在一定程度上取决于蛋白质和粒子的静电作用。这些,结合自由能计算,表明蛋白质和粒子电荷不会显著改变蛋白质-粒子结合的强度,但会影响蛋白质在层中的分布。特别是,自由蛋白质与蛋白质-粒子复合物的结合比与任一蛋白质的结合更强,这表明已经吸附的蛋白质和粒子具有协同作用。这有助于解释实验观察到的硬壳层中蛋白质层更密集和蛋白质-蛋白质相互作用更强的现象。