Suppr超能文献

预测健康恶化模型:个性化医疗中的疾病途径理解。

Predictive Models for Health Deterioration: Understanding Disease Pathways for Personalized Medicine.

机构信息

Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; email:

Digital Medicine Group, Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, Belvaux, Luxembourg.

出版信息

Annu Rev Biomed Eng. 2023 Jun 8;25:131-156. doi: 10.1146/annurev-bioeng-110220-030247. Epub 2023 Feb 28.

Abstract

Artificial intelligence (AI) and machine learning (ML) methods are currently widely employed in medicine and healthcare. A PubMed search returns more than 100,000 articles on these topics published between 2018 and 2022 alone. Notwithstanding several recent reviews in various subfields of AI and ML in medicine, we have yet to see a comprehensive review around the methods' use in longitudinal analysis and prediction of an individual patient's health status within a personalized disease pathway. This review seeks to fill that gap. After an overview of the AI and ML methods employed in this field and of specific medical applications of models of this type, the review discusses the strengths and limitations of current studies and looks ahead to future strands of research in this field. We aim to enable interested readers to gain a detailed impression of the research currently available and accordingly plan future work around predictive models for deterioration in health status.

摘要

人工智能 (AI) 和机器学习 (ML) 方法目前在医学和医疗保健领域得到广泛应用。仅在 2018 年至 2022 年期间,PubMed 上就有超过 100,000 篇关于这些主题的文章。尽管最近在医学领域的各个子领域中对 AI 和 ML 进行了几次综述,但我们还没有看到关于这些方法在个体患者健康状况的纵向分析和预测中在个性化疾病途径中的综合应用的综述。本综述旨在填补这一空白。在概述了该领域中使用的 AI 和 ML 方法以及此类模型在特定医学应用之后,本综述讨论了当前研究的优缺点,并展望了该领域未来的研究方向。我们的目标是使有兴趣的读者能够详细了解当前可用的研究,并相应地围绕健康状况恶化的预测模型来规划未来的工作。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验