Energy Technology Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, Southampton, UK.
Nanoscale. 2019 Mar 14;11(11):4653-4682. doi: 10.1039/c9nr00117d.
The recent development of nanoscale fillers, such as carbon nanotubes, graphene, and nanocellulose, allows the functionality of polymer nanocomposites to be controlled and enhanced. However, conventional synthesis methods of polymer nanocomposites cannot maximise the reinforcement of these nanofillers at high filler content. Approaches for the synthesis of high content filler polymer nanocomposites are suggested to facilitate future applications. The fabrication methods address the design of the polymer nanocomposite architecture, which encompasses one, two, and three dimensional morphologies. Factors that hamper the reinforcement of nanostructures, such as alignment, dispersion of the filler and interfacial bonding between the filler and polymer, are outlined. Using suitable approaches, maximum potential reinforcement of nanoscale fillers can be anticipated without limitations in orientation, dispersion, and the integrity of the filler particle-matrix interface. High filler content polymer composites containing emerging materials such as 2D transition metal carbides, nitrides, and carbonitrides (MXenes) are expected in the future.
最近,纳米填料(如碳纳米管、石墨烯和纳米纤维素)的发展使得可以控制和增强聚合物纳米复合材料的功能。然而,聚合物纳米复合材料的传统合成方法不能在高填充含量下最大限度地增强这些纳米填料。建议采用合成高含量填充聚合物纳米复合材料的方法来促进未来的应用。这些制造方法解决了聚合物纳米复合材料结构的设计问题,包括一维、二维和三维形态。概述了阻碍纳米结构增强的因素,例如纳米结构的取向、分散和纳米结构与聚合物之间的界面键合。通过使用合适的方法,可以在不限制取向、分散和纳米结构-基体界面完整性的情况下,最大程度地提高纳米填料的潜在增强效果。未来有望出现含有新兴材料(如二维过渡金属碳化物、氮化物和碳氮化物(MXenes))的高填充量聚合物复合材料。