Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan.
Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Koganei, Tokyo, 184-8588, Japan.
Mar Biotechnol (NY). 2023 Apr;25(2):272-280. doi: 10.1007/s10126-023-10203-w. Epub 2023 Mar 1.
Highly oil-accumulative diatoms are expected to be a promising biomass for the production of biofuel. To harvest the diatom oils at high yields, it is critical to elucidate the relationship of oil accumulation with photosynthesis under fluctuating environmental conditions. Here, we characterized the physiological responses of the growth and photosynthesis in the mesophilic diatom Fistulifera solaris and the cold-tolerant one Mayamaea sp. JPCC CTDA0820 to nitrogen starvation, one of the most notable abiotic stresses, where most eukaryotic algae decrease their photosynthetic activity and accumulate oil in the cells. While F. solaris started showing growth retardation at NaNO levels less than 50% of a normal F/2 artificial seawater (ASW) medium, Mayamaea sp. sustained normal growth even at a NaNO level 10% of normal F/2ASW, indicating the sharp contrast of nitrogen requirement between these two diatom species. In the transition from 100 to 0% nitrogen conditions in the modified F/2ASW, F. solaris showed a clear suppression of chlorophyll (Chl)-based photosynthetic O evolution rate and relative electron transport rate at photosystem II, which were negatively correlated to the capacity of non-photochemical quenching. Meanwhile, there was no change in these Chl-based parameters observed in nitrogen-starved Mayamaea sp. Instead, Mayamaea sp. showed a significant decrease in the Chl a amount per cells. These data suggested the occurrence of two types of photosynthetic responses to nitrogen starvation in oleaginous diatoms; that is, (1) suppression of photosynthetic activity per Chl with enhancing heat dissipation of excess light energy and (2) synchronous suppression of cellular photosynthetic activity with Chl amounts.
高含油量硅藻有望成为生物燃料生产的有前途的生物质。为了以高产量收获硅藻油,阐明在波动的环境条件下油脂积累与光合作用之间的关系至关重要。在这里,我们描述了嗜热硅藻 Fistulifera solaris 和耐寒硅藻 Mayamaea sp. JPCC CTDA0820 在氮饥饿(一种最显著的非生物胁迫)下的生长和光合作用的生理响应,在这种情况下,大多数真核藻类会降低其光合作用活性并在细胞中积累油脂。虽然 F. solaris 在 NaNO 水平低于正常 F/2 人工海水(ASW)培养基的 50%时开始表现出生长迟缓,但 Mayamaea sp. 在 NaNO 水平为正常 F/2ASW 的 10%时仍能维持正常生长,表明这两种硅藻物种对氮的需求存在明显差异。在从改良 F/2ASW 中的 100%氮条件过渡到 0%氮条件时,F. solaris 的叶绿素(Chl)光合作用 O 2 释放率和光系统 II 的相对电子传递率明显受到抑制,这与非光化学猝灭的能力呈负相关。同时,在氮饥饿的 Mayamaea sp. 中没有观察到这些基于 Chl 的参数发生变化。相反,Mayamaea sp. 的细胞内 Chl a 量显著减少。这些数据表明,在产油硅藻中发生了两种类型的光合作用对氮饥饿的响应;即(1)抑制每 Chl 的光合作用活性,同时增强过量光能的耗散;(2)同步抑制细胞光合作用活性与 Chl 量。