Chen Xiaobo, Ge Huiran, Yang Wen, Yang Peizhi
School of Physics and Electronic Engineering, Jiangsu Intelligent Optoelectronic Device and Measurement and Control Engineering Research Center, Yancheng Teachers University, Yancheng, 224051, PR China.
Key Laboratory of Education Ministry for Advanced Technique and Preparation of Renewable Energy Materials, Solar Energy Research Institute, Yunnan Normal University, Kunming 650500, PR China.
Dalton Trans. 2023 Mar 21;52(12):3746-3754. doi: 10.1039/d3dt00025g.
Copper cobalt sulfide (CuCoS) nanomaterials are regarded as promising electrode materials for high-performance supercapacitors due to their abundant redox states and considerable theoretical capacities. However, the intrinsic poor electrical conductivity, sluggish reaction kinetics and insufficient number of electroactive sites of these materials are huge barriers to realize their practical applications. In this study, a facile two-step strategy to engineer a hierarchical 3D porous CuCoS/MXene composite electrode is presented for enhanced storage properties. This well-constructed CuCoS/MXene composite not only provides abundant active sites for the faradaic reaction, but also offers more efficient pathways for rapid electron/ion transport and restricts the volumetric expansion during the charge/discharge process. When evaluated in a 3 M KOH electrolyte, the CuCoS/MXene-3 electrode exhibits a specific capacity of 1351.6 C g at 1 A g while retaining excellent cycling stability (95.2% capacity retention at 6 A g after 10 000 cycles). Additionally, the solid-state asymmetric supercapacitor (ASC) CuCoS/MXene//AC device displays an energy density of 78.1 W h kg and a power density of 800.7 W kg. Two ASC devices connected in series can illuminate a blue LED indicator for more than 20 min, demonstrating promising prospects for practical applications. These electrochemical properties indicate that the high-performance CuCoS/MXene composites are promising electrode materials for advanced asymmetric supercapacitors.
硫化铜钴(CuCoS)纳米材料因其丰富的氧化还原态和可观的理论容量,被视为高性能超级电容器的有前景的电极材料。然而,这些材料固有的导电性差、反应动力学迟缓以及电活性位点数量不足,是实现其实际应用的巨大障碍。在本研究中,提出了一种简便的两步策略来设计一种分级三维多孔CuCoS/MXene复合电极,以增强存储性能。这种构建良好的CuCoS/MXene复合材料不仅为法拉第反应提供了丰富的活性位点,还为快速电子/离子传输提供了更有效的途径,并限制了充放电过程中的体积膨胀。在3 M KOH电解液中评估时,CuCoS/MXene-3电极在1 A g下表现出1351.6 C g的比容量,同时保持优异的循环稳定性(10000次循环后在6 A g下容量保持率为95.2%)。此外,固态非对称超级电容器(ASC)CuCoS/MXene//AC器件显示出78.1 W h kg的能量密度和800.7 W kg的功率密度。两个串联的ASC器件可以点亮一个蓝色LED指示灯超过20分钟,展示了实际应用的广阔前景。这些电化学性能表明,高性能的CuCoS/MXene复合材料是用于先进非对称超级电容器的有前景的电极材料。