State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China.
College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, China.
Rev Sci Instrum. 2023 Feb 1;94(2):023903. doi: 10.1063/5.0106351.
Angle-resolved photoemission spectroscopy with sub-micrometer spatial resolution (μ-ARPES), has become a powerful tool for studying quantum materials. To achieve sub-micrometer or even nanometer-scale spatial resolution, it is important to focus the incident light beam (usually from synchrotron radiation) using x-ray optics, such as the zone plate or ellipsoidal capillary mirrors. Recently, we developed a laser-based μ-ARPES with spin-resolution (LMS-ARPES). The 177 nm laser beam is achieved by frequency-doubling a 355 nm beam using a KBBF crystal and subsequently focused using an optical lens with a focal length of about 16 mm. By characterizing the focused spot size using different methods and performing spatial-scanning photoemission measurement, we confirm the sub-micron spatial resolution of the system. Compared with the μ-ARPES facilities based on the synchrotron radiation, our LMS-ARPES system is not only more economical and convenient, but also with higher photon flux (>5 × 10 photons/s), thus enabling the high-resolution and high-statistics measurements. Moreover, the system is equipped with a two-dimensional spin detector based on exchange scattering at a surface-passivated iron film grown on a W(100) substrate. We investigate the spin structure of the prototype topological insulator BiSe and reveal a high spin-polarization rate, confirming its spin-momentum locking property. This lab-based LMS-ARPES will be a powerful research tool for studying the local fine electronic structures of different condensed matter systems, including topological quantum materials, mesoscopic materials and structures, and phase-separated materials.
角分辨光电子能谱具有亚微米空间分辨率(μ-ARPES),已成为研究量子材料的有力工具。为了实现亚微米甚至纳米级的空间分辨率,重要的是使用 X 射线光学器件(如波带片或椭圆毛细管镜)聚焦入射光束(通常来自同步辐射)。最近,我们开发了一种具有自旋分辨率的基于激光的 μ-ARPES(LMS-ARPES)。177nm 激光束是通过使用 KBBF 晶体将 355nm 光束倍频得到的,然后使用焦距约为 16mm 的光学透镜聚焦。通过使用不同的方法对聚焦光斑尺寸进行特性分析,并进行空间扫描光发射测量,我们确认了该系统的亚微米空间分辨率。与基于同步辐射的 μ-ARPES 设备相比,我们的 LMS-ARPES 系统不仅更经济、更方便,而且具有更高的光子通量(>5×10 光子/s),从而实现了高分辨率和高统计测量。此外,该系统配备了一个二维自旋探测器,该探测器基于在 W(100)衬底上生长的表面钝化铁膜的交换散射。我们研究了原型拓扑绝缘体 BiSe 的自旋结构,并揭示了其具有高自旋极化率,证实了其自旋-动量锁定特性。这个基于实验室的 LMS-ARPES 将成为研究不同凝聚态系统局部精细电子结构的有力研究工具,包括拓扑量子材料、介观材料和结构以及相分离材料。