Suppr超能文献

利用图形处理单元加速密度泛函紧束缚方法。

Accelerating the density-functional tight-binding method using graphical processing units.

机构信息

Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, USA.

School of Chemistry, University of Costa Rica, San José 11501-2060, Costa Rica.

出版信息

J Chem Phys. 2023 Feb 28;158(8):084802. doi: 10.1063/5.0130797.

Abstract

Acceleration of the density-functional tight-binding (DFTB) method on single and multiple graphical processing units (GPUs) was accomplished using the MAGMA linear algebra library. Two major computational bottlenecks of DFTB ground-state calculations were addressed in our implementation: the Hamiltonian matrix diagonalization and the density matrix construction. The code was implemented and benchmarked on two different computer systems: (1) the SUMMIT IBM Power9 supercomputer at the Oak Ridge National Laboratory Leadership Computing Facility with 1-6 NVIDIA Volta V100 GPUs per computer node and (2) an in-house Intel Xeon computer with 1-2 NVIDIA Tesla P100 GPUs. The performance and parallel scalability were measured for three molecular models of 1-, 2-, and 3-dimensional chemical systems, represented by carbon nanotubes, covalent organic frameworks, and water clusters.

摘要

使用 MAGMA 线性代数库,在单个和多个图形处理单元 (GPU) 上加速密度泛函紧束缚 (DFTB) 方法。在我们的实现中,解决了 DFTB 基态计算的两个主要计算瓶颈:哈密顿矩阵对角化和密度矩阵构建。代码在两个不同的计算机系统上实现和基准测试:(1) 橡树岭国家实验室领导力计算设施的 SUMMIT IBM Power9 超级计算机,每个计算机节点具有 1-6 个 NVIDIA Volta V100 GPU;(2) 内部的 Intel Xeon 计算机,具有 1-2 个 NVIDIA Tesla P100 GPU。针对 1-、2-和 3-维化学系统的三个分子模型,即碳纳米管、共价有机骨架和水分子簇,测量了性能和并行可扩展性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验