Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA.
Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
J Chem Phys. 2023 Feb 28;158(8):085104. doi: 10.1063/5.0136010.
Despite more than a century of study, consensus on the molecular basis of allostery remains elusive. A comparison of allosteric and non-allosteric members of a protein family can shed light on this important regulatory mechanism, and the bacterial biotin protein ligases, which catalyze post-translational biotin addition, provide an ideal system for such comparison. While the Class I bacterial ligases only function as enzymes, the bifunctional Class II ligases use the same structural architecture for an additional transcription repression function. This additional function depends on allosterically activated homodimerization followed by DNA binding. In this work, we used experimental, computational network, and bioinformatics analyses to uncover distinguishing features that enable allostery in the Class II biotin protein ligases. Experimental studies of the Class II Escherichia coli protein indicate that catalytic site residues are critical for both catalysis and allostery. However, allostery also depends on amino acids that are more broadly distributed throughout the protein structure. Energy-based community network analysis of representative Class I and Class II proteins reveals distinct residue community architectures, interactions among the communities, and responses of the network to allosteric effector binding. Bioinformatics mutual information analyses of multiple sequence alignments indicate distinct networks of coevolving residues in the two protein families. The results support the role of divergent local residue community network structures both inside and outside of the conserved enzyme active site combined with distinct inter-community interactions as keys to the emergence of allostery in the Class II biotin protein ligases.
尽管经过了一个多世纪的研究,人们仍然难以确定变构作用的分子基础。对蛋白质家族中的变构和非变构成员进行比较,可以揭示这种重要的调节机制,而催化翻译后生物素添加的细菌生物素蛋白连接酶则为这种比较提供了一个理想的系统。虽然 I 类细菌连接酶仅作为酶起作用,但双功能 II 类连接酶使用相同的结构架构来实现额外的转录抑制功能。该附加功能依赖于变构激活的同源二聚化,然后是 DNA 结合。在这项工作中,我们使用实验、计算网络和生物信息学分析来揭示使 II 类生物素蛋白连接酶发生变构作用的区别特征。对 II 类大肠杆菌蛋白的实验研究表明,催化位点残基对于催化和变构作用都是至关重要的。然而,变构作用也取决于在蛋白质结构中更广泛分布的氨基酸。代表性 I 类和 II 类蛋白质的基于能量的社区网络分析揭示了不同的残基社区结构、社区之间的相互作用以及网络对变构效应物结合的响应。对多个序列比对的信息论相互信息分析表明,在这两个蛋白质家族中存在不同的共进化残基网络。结果支持了在保守酶活性位点内部和外部具有不同局部残基社区网络结构以及不同的社区间相互作用的作用,这是 II 类生物素蛋白连接酶变构作用出现的关键。